Distributed, Quantum Multi-Agent Deep Reinforcement Learning for Wireless 6G Systems

Objectives. The sixth-generation (6G) wireless cellular system will be an artificial intelligence (Al)-native network
in which most of the protocol stack is designed using data-machine learning (ML) techniques as envisioned by in-
dustry, academia, and standardization bodies. For example, deep reinforcement learning (DRL) and multi-agent DRL
(MADRL) solutions are being considered to address various 6G problems [1-4] ranging from transceiver design to
resource management. Distributed MADRL solutions particularly have several benefits for designing Al-native 6G
systems that range from the possibility of deploying them at the edge of the wireless network to their inherent abil-
ity to accommodate agents with heterogeneous capabilities. However, existing DRL and MADRL schemes [1-4] have
limited performance in terms of robustness, latency, and efficiency. Moreover, they cannot handle non-stationary
and partially observable environments, and they face major complexity, overhead, and computational challenges
due to their limited scalability to scenarios with large action spaces or large number of devices and their reliance
on updating a large number of deep neural network (DNN) parameters. To overcome these challenges, we propose
a novel framework of quantum MADRL (QMADRL) that combines the benefits of quantum mechanics with those
of distributed MADRL, and that will be designed to address major wireless é6G challenges. Recent works on quan-
tum machine learning (QML) [5, 6] showed its benefits for improving efficiency and enhancing ML generalization.
Several works [7-12] merged quantum mechanics and DRL to boost the learning efficiency and robustness of DRL.
For example, comparable or better learning performance with much lighter parameter update of the quantum DRL
algorithm was shown in [7], compared to DNN-based DRL. A fundamental question is whether one can build a novel
QMADRL framework that can be used to design Al-native 6G systems, with low latency and high reliability. Although
there are some recent works on QRL in [7,11-14], these works do not leverage quantum DRL to address wireless 6G
problems, and they mostly rely on single agent or they make assumptions that are impractical for real 6G systems,
e.g., quantum errors were not considered [14] and full observability of environment was naively adopted [15].

The goal of this project is thus to lay the theoretical foundations of distributed QMADRL for radio resource co-
ordination in Al-native wireless 6G systems. First, we will develop new distributed QMADRL algorithms tailored
towards solving complex optimization problems in 6G networks, such as problems of radio resource management,
e.g., beamforming design, spectrum access, and resource (energy, bandwidth) allocation. Decentralized actors will
be redesigned with variational quantum circuit (VQC) including state encoding as well as parametric quantum circuit
(PQC) and measurements, while VQC-based critic can remain centralized for dealing with non-stationarity. Here, we
will investigate the impact of various PQC ansatzes. For QMADRL, we will study the signaling overhead and infor-
mation sharing among distributed agents, and we will theoretically and empirically show how and when quantum
designs can reduce such overhead, while identifying its impact on the learning in several 6G use cases. Our designs
will incorporate practical consideration on partial observability of complex 6G wireless environments. The appli-
cation of VQC-aided training architecture for QMADRL can significantly reduce the number of training parameters,
which could help overcome the scalability and latency challenges of DNN-based MADRL. VQC can be implemented
on conventional computers, with the help of related libraries, e.g., PennylLane, IBM Qiskit, Google Cirg, and Torch
Quantum. Next, we will leverage promising techniques such as space compression [16], hypernetwork [17], and
meta-learning [18] to enhance the robustness and scalability of the proposed QMADRL for large-scale and hetero-
geneous 6G networks. We will investigate practical implementation considerations for our QMADRL. For instance, in
the current noise intermediate-scale quantum (NISQ) era, quantum errors caused by quantum decoherence and im-
precision of quantum gates will inevitably jeopardize the learning performance of VQC-based schemes. Hence, we
will explicitly investigate the fundamental effects of quantum noise on our QMADRL solutions, and we will propose
efficient strategies (e.g., hybrid optimization [19] or ensemble learning [20]) to counter this shortcoming. Finally, we
will develop quantum-inspired MADRL schemes in which principles from quantum physics are used to aid classical
MADRL action selection and experience replay, building on Dr. Li’s prior works [21-23]. In short, this research will
contribute simultaneously to Al, quantum computing, and wireless 6G systems thus providing scientific foundations
for the promising interdisciplinary area of QMADRL applied to 6G systems.

Fellow Qualifications. Dr. Li has a unique expertise that spans DRL, wireless systems, and quantum-aided ML with
an impressive record of over 10 publications in these areas [21-33], most of which appeared in top-tier venues such
as the IEEE Transactions on Wireless Communications (the most prestigious wireless journal). Beyond designing
novel DRL solutions for wireless systems in [21-25], during his PhD at the prestigious King’s College London (UK),
Dr. Li developed some of the first quantum-aided DRL algorithms [21-23] for drone-assisted wireless networks.
These results will be a key building block for this research. Dr. Li is also an expert in designing wireless network
protocols as done in [26-33]. Hence, the candidate has a very distinguished blend of expertise, across Al, wireless
networks, and quantum, that is rarely found in postdoc applicants and which uniquely qualifies him for this award.

Contribution to Fellow Career Goals. Dr. Li’s career goal is to become a faculty member at a world-leading uni-
versity, e.g., VT or a peer-like institution. This fellowship is an optimal m r boosting chances of achieving his
long-term aspiration. During this fellowship, Dr. Li will work with both Dr. _’s group, with expertise on quantum
computing, and Dr. |JJJlifs group with expertise in Al and wireless networ s. T s is a very unique opportunity for al-
lowing Dr. Li to gain extensive knowledge and forge multi-disciplinary expertise in quantum computing, distributed
Al, and QMADRL solutions for empowering future 6G wireless systems. He will be encouraged to publish in top-tier
venues for Al, quantum, and wireless, and to write grant proposals, which will be an invaluable skill. This training
will uniquely qualify him for multiple faculty positions in different areas. This fellowship will also offer Dr. Li invalu-
able real-world expertise in leading research proposals, and it will help him expand his scholarship, track record
and academic visibility by interacting with the large network of international and national collaborators (including
those at Virginia Tech) of the two mentors. The mentors will hone Dr. Li's leadership skills and boost his visibility by
encouraging him to lead collaborative projects and intiatives (e.g., workshops etc.).
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