
Distributed, QuantumMul�-Agent Deep Reinforcement Learning for Wireless �G Systems
Objec�ves. The sixth-genera�on (�G) wireless cellular system will be an ar��cial intelligence (AI)-na�ve network
in which most of the protocol stack is designed using data-machine learning (ML) techniques as envisioned by in-
dustry, academia, and standardiza�on bodies. For example, deep reinforcement learning (DRL) andmul�-agent DRL
(MADRL) solu�ons are being considered to address various �G problems [�–�] ranging from transceiver design to
resource management. Distributed MADRL solu�ons par�cularly have several bene�ts for designing AI-na�ve �G
systems that range from the possibility of deploying them at the edge of the wireless network to their inherent abil-
ity to accommodate agents with heterogeneous capabili�es. However, exis�ng DRL andMADRL schemes [�–�] have
limited performance in terms of robustness, latency, and e�ciency. Moreover, they cannot handle non-sta�onary
and par�ally observable environments, and they face major complexity, overhead, and computa�onal challenges
due to their limited scalability to scenarios with large ac�on spaces or large number of devices and their reliance
on upda�ng a large number of deep neural network (DNN) parameters. To overcome these challenges, we propose
a novel framework of quantum MADRL (QMADRL) that combines the bene�ts of quantum mechanics with those
of distributed MADRL, and that will be designed to address major wireless �G challenges. Recent works on quan-
tum machine learning (QML) [�, �] showed its bene�ts for improving e�ciency and enhancing ML generaliza�on.
Several works [�–��] merged quantum mechanics and DRL to boost the learning e�ciency and robustness of DRL.
For example, comparable or be�er learning performance with much lighter parameter update of the quantum DRL
algorithmwas shown in [�], compared to DNN-based DRL. A fundamental ques�on is whether one can build a novel
QMADRL framework that can be used to design AI-na�ve �G systems, with low latency and high reliability. Although
there are some recent works on QRL in [�, ��–��], these works do not leverage quantum DRL to address wireless �G
problems, and they mostly rely on single agent or they make assump�ons that are imprac�cal for real �G systems,
e.g., quantum errors were not considered [��] and full observability of environment was naively adopted [��].

The goal of this project is thus to lay the theore�cal founda�ons of distributed QMADRL for radio resource co-
ordina�on in AI-na�ve wireless �G systems. First, we will develop new distributed QMADRL algorithms tailored
towards solving complex op�miza�on problems in �G networks, such as problems of radio resource management,
e.g., beamforming design, spectrum access, and resource (energy, bandwidth) alloca�on. Decentralized actors will
be redesignedwith varia�onal quantum circuit (VQC) including state encoding as well as parametric quantum circuit
(PQC) andmeasurements, while VQC-based cri�c can remain centralized for dealing with non-sta�onarity. Here, we
will inves�gate the impact of various PQC ansatzes. For QMADRL, we will study the signaling overhead and infor-
ma�on sharing among distributed agents, and we will theore�cally and empirically show how and when quantum
designs can reduce such overhead, while iden�fying its impact on the learning in several �G use cases. Our designs
will incorporate prac�cal considera�on on par�al observability of complex �G wireless environments. The appli-
ca�on of VQC-aided training architecture for QMADRL can signi�cantly reduce the number of training parameters,
which could help overcome the scalability and latency challenges of DNN-based MADRL. VQC can be implemented
on conven�onal computers, with the help of related libraries, e.g., PennyLane, IBM Qiskit, Google Cirq, and Torch
Quantum. Next, we will leverage promising techniques such as space compression [��], hypernetwork [��], and
meta-learning [��] to enhance the robustness and scalability of the proposed QMADRL for large-scale and hetero-
geneous �Gnetworks. Wewill inves�gate prac�cal implementa�on considera�ons for our QMADRL. For instance, in
the current noise intermediate-scale quantum (NISQ) era, quantum errors caused by quantumdecoherence and im-
precision of quantum gates will inevitably jeopardize the learning performance of VQC-based schemes. Hence, we
will explicitly inves�gate the fundamental e�ects of quantum noise on our QMADRL solu�ons, and we will propose
e�cient strategies (e.g., hybrid op�miza�on [��] or ensemble learning [��]) to counter this shortcoming. Finally, we
will develop quantum-inspired MADRL schemes in which principles from quantum physics are used to aid classical
MADRL ac�on selec�on and experience replay, building on Dr. Li’s prior works [��–��]. In short, this research will
contribute simultaneously to AI, quantum compu�ng, and wireless �G systems thus providing scien��c founda�ons
for the promising interdisciplinary area of QMADRL applied to �G systems.
FellowQuali�ca�ons. Dr. Li has a unique exper�se that spans DRL, wireless systems, and quantum-aidedML with
an impressive record of over �� publica�ons in these areas [��–��], most of which appeared in top-�er venues such
as the IEEE Transac�ons on Wireless Communica�ons (the most pres�gious wireless journal). Beyond designing
novel DRL solu�ons for wireless systems in [��–��], during his PhD at the pres�gious King’s College London (UK),
Dr. Li developed some of the �rst quantum-aided DRL algorithms [��–��] for drone-assisted wireless networks.
These results will be a key building block for this research. Dr. Li is also an expert in designing wireless network
protocols as done in [��–��]. Hence, the candidate has a very dis�nguished blend of exper�se, across AI, wireless
networks, and quantum, that is rarely found in postdoc applicants and which uniquely quali�es him for this award.
Contribu�on to Fellow Career Goals. Dr. Li’s career goal is to become a faculty member at a world-leading uni-
versity, e.g., VT or a peer-like ins�tu�on. This fellowship is an op�mal m r boos�ng chances of achieving his
long-term aspira�on. During this fellowship, Dr. Li will work with both Dr. ’s group, with exper�se on quantum
compu�ng, and Dr. ’s group with exper�se in AI and wireless networ s. T s is a very unique opportunity for al-
lowing Dr. Li to gain extensive knowledge and forge mul�-disciplinary exper�se in quantum compu�ng, distributed
AI, and QMADRL solu�ons for empowering future �G wireless systems. He will be encouraged to publish in top-�er
venues for AI, quantum, and wireless, and to write grant proposals, which will be an invaluable skill. This training
will uniquely qualify him for mul�ple faculty posi�ons in di�erent areas. This fellowship will also o�er Dr. Li invalu-
able real-world exper�se in leading research proposals, and it will help him expand his scholarship, track record
and academic visibility by interac�ng with the large network of interna�onal and na�onal collaborators (including
those at Virginia Tech) of the two mentors. The mentors will hone Dr. Li’s leadership skills and boost his visibility by
encouraging him to lead collabora�ve projects and in�a�ves (e.g., workshops etc.).
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