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Abstract

Owing to their autonomy, flexibility and broad range of application domains, unmanned
aerial vehicles (UAVs) are deemed as a promising solution for not only improving wireless
communication performance but also empowering new industrial opportunities, e.g., en-
hancing wireless transmissions’ coverage, capacity, reliability and energy efficiency, and
realizing real-time video streaming and parcel delivery. However, to further release the
potentials of UAV-aided networks, there are still numerous technical challenges waiting
to be tackled, inter alia, resource management, performance analysis and trajectory opti-
mization. This thesis comprehensively investigates the aforementioned three key topics
and is devoted to providing either thorough performance analysis or effective optimization
algorithms for UAV-mounted networks among various application scenarios.

To enhance transmission quality, privacy level, and energy manipulating efficiency for
UAV-relaying networks, this thesis begins with initiating a novel simultaneous wireless in-
formation and power transfer (SWIPT) full-duplex (FD) UAV-relaying protocol, termed as
harvest-and-opportunistically-relay (HOR). Then, performance analyses on transmission
outage and covert communications are performed, based on which impacts of key sys-
tem parameters are analysed and discussed, while fundamental trade-offs are spotted. In
the next technical chapter, to enhance wireless transmission quality for cellular-connected
UAVs while protecting ground users from being interfered, a joint time-frequency resource
block (RB) and beamforming optimization problem minimizing the expected outage dura-
tion (EOD) of UAV is studied. To solve the proposed radio resource management problem,
a deep reinforcement learning (DRL) solution is proposed, where deep double duelling Q

network (D3QN) and twin delayed deep deterministic policy gradient (TD3) are invoked



| vii

to deal with RB allocation in discrete action domain and beamforming design in con-
tinuous action regime, respectively. In the last two technical chapters, UAV trajectory
optimizations are conducted in scenarios of UAV base station (BS) uplink transmissions
and cellular-connected UAV, where Grover iteration from quantum mechanics is adopted
to aid action selection and experience replay of tabular reinforcement learning (RL) and
DRL frameworks, separately. Numerical results regarding aforementioned performance
analysis are conducted on MATLAB, while those about performance optimization are per-

formed on Python.
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Chapter 1

Introduction

1.1 Unmanned Aerial Vehicles

Unmanned aerial vehicle (UAV), also known as drone or remotely piloted flying machine,
refers to aircraft without on-board human pilots, crews or passengers. The flight of UAV
may be operated and managed by either remote human controller or integrated algorithms,
e.g., autopilot assistance and fully autonomous navigations with no needs of human inter-
ventions. Based on different metrics, e.g., mean take-off weight (MTOW), capabilities,
operational altitude, achievable speed, weight, wing arrangement and size, drones can be
classified into various categories. A typical example is from the perspective of wing con-
figuration, drones can be categorized as rotary-wing UAVs and fixed-wing UAVs. On one
hand, rotary-wing UAVs, e.g., quadcopters, are able to not only roam to arbitrary direction
but also hover in the sky, while fixed-wing UAVs cannot hover and have to maintain an
uninterrupted forward motion for keeping aloft. On the other hand, rotary-wing UAVs
cannot afford to carry massive payload and have constrained mobility, while fixed-wing
UAVs are able to carry heavy freight and achieve high-speed velocity. For a detailed
demonstration of UAV classifications, please refer to [1].

Historically, UAVs were adopted in the scenario of military missions that may en-
danger soldiers’ life, e.g., deploying UAVs for remote surveillance and armed strikes. In

recent years, UAVs become more accessible and popular in commercial markets, thanks to
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the advancement of manufacturing and costs fell. In civilian applications, UAVs have been
applied to achieve lots of meaningful and essential goals, e.g., traffic control, photography,
parcel delivery, inspection, transmission relaying, aerial photography & videography, bird
control, live streaming, search & rescue, quality index monitoring and smart agricultures
[2-5]. According to one of the latest market assessment reports [6], the global UAV market
is estimated to reach USD 27.4 billion in the year 2021, while being forecasted to hit USD
58.4 billion by the year 2026 with compound annual growth rate (CAGR) of 16.4% along-
side the time horizon 2021-2026. Some key real-world UAV applications and intuitives
include Google’s Loon project, Amazon Prime Air and Google’s Project Wing. With the
global outbreak of COVID-19 pandemic, the demands of contactless deliveries of medical
supplies and other essentials further stimulate the soaring of UAV market shares.

To enable unmanned aircraft system, wireless communications are undoubtedly of
essence and significance. The corresponding reasons can be interpreted as: 1) UAVs
have to keep exchanging vital control and non-payload communication (CNPC) data with
ground-based pilot and air traffic coordinator, for realizing reliable, efficient and secure
flights; and 2) mission-oriented payload communication data, e.g., images, videos and
relayed signals, need to be transmitted/received to/from ground transceivers. Symmetri-
cally, UAVs are playing an important and irreplaceable role to help achieve connectivity-
seamless and high-quality wireless communications [7-18]. Taking advantage of UAV’s
high flying altitude and line-of-sight (LoS) aerial-terrestrial links, wireless coverage and
transmission performance can be further enhanced [19, 20]. Besides, blessed by UAVs’
configurable mobility and flexible deployment, UAVs are widely utilized to not only de-
liver data offloading services in the scenario of jammed signal traffic but also provide tem-
porary wireless coverage in the case of damaged communication infrastructures [21-23].
Additionally, UAVs can play the role as relaying infrastructure for wireless communica-
tions, helping establish complementary transmission links for transceivers that are far away
from each other where satisfactory direct channels are unavailable and non-line-of-sight

(NLoS) wireless links dominate [24-26].
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1.1.1 Air-to-Ground Channel Model

LoS A2G Link f
&
——————— NLoS A2G Link

Fig. 1.1 A simple example of LoS/NLoS A2G wireless link

Fig. 1.1 depicts a concise but representative example of air-to-ground (A2G) wireless
channels, where Hy 5y represents UAV’s altitude, H, indicates terrestrial transceiver’s
antenna height, and d,, and d; denote horizontal and the corresponding 3-dimensional
(3D) distances between ground node and UAV, respectively. Compared to terrestrial com-
munication scenarios where NLoS wireless links are the most likely to be experienced,
UAV-aided networks are more likely to establish LoS wireless links among transceivers
because UAVs are flying in the sky with relatively high altitude. Therefore, simple free-
space pathloss is no longer suitable to model A2G wireless channels, especially, for cir-
cumstances where potential obstructions, e.g., buildings and trees, cannot be overpassed.
Significant efforts have been devoted to developing more accurate A2G channel models
that can better characterize the unique propagation environment of UAV-mounted net-
works [17, 27-29]. In the following, two typical A2G channel models that are commonly

applied in current literature are concisely introduced.

1. Angle/Altitude Based A2G Channel Parameters: As UAV’s flying altitude varies,
the situation of A2G signal blockage and scattering changes accordingly. For in-
stance, in the case of increasing altitude, LoS A2G channels are getting more chance
to be encountered, while on the contrary, when UAV’s altitude is decreasing, NLoS

A2G links are more likely to be experienced. To track the aforementioned charac-



1.1. Unmanned Aerial Vehicles | 4

teristic of A2G channels, one practical manner is to take altitude or angle of A2G
links into account, where such considerations may affect the following A2G channel
parameters: pathloss component, shadowing’s variance [27], Rician factor [28] and

excessive pathloss gain [29].

. Probabilistic A2G Channel Model: Probabilistic LoS channel model is widely ap-
plied to characterize A2G propagation gain, by separately modelling LoS/NLoS
pathloss and considering their occurrence probabilities. This approach is based
on statistical information of local environment, e.g., building distribution includ-
ing buildings’ horizontal locations and their corresponding heights [17]. Then, for
given coordinates of transceivers, the probability of encountering explicit type of
A2G wireless links, i.e., LoS or NLoS, can be tracked via checking potential exis-
tence of obstacles alongside the line drawn between UAV and ground equipment,

over the considered statistical model of environment.

e FElevation Angle Based Probabilistic LoS model: For mathematical tractability,
this approach computes the expected A2G pathloss gain between UAV and
ground node, via considering LoS probability which is modelled as a logistic
function of the elevation angle and specifying different large-scale propagation

loss for LoS/NLoS link [30, 31].

o A2G Channel Model Suggested by 3GPP: To support UAVs served by long-
term evolution (LTE) networks, 3rd generation partnership project (3GPP) has
specified comprehensive A2G channel modelling between ground base station
(BS) and UAV for three typical circumstances, i.e., rural Macro (RMa), urban
Macro (UMa) and urban Micro (UMi). In such channel modelling solution,
LoS probability, small-scale fading, LoS/NLoS pathloss and shadowing for
the aforementioned three scenarios with UAV altitude ranged from 1.5m to
300m are explicitly stated. Note that the LoS probability is determined by two

parameters, i.e., UAV’s altitude and horizontal distance between BS and UAV.
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For detailed information regarding this approach of A2G channel modelling,

please refer to Tables B1-B4 on reference [32].

The choice of A2G channel model should be corresponded to the concentrated trans-
mission environment and the goal of investigation, due to the dilemma rooted from mod-
elling accuracy and analytical complexity. Angle/altitude based A2G channel parameter
and elevation angle based probabilistic LoS model are usually invoked to conduct wire-
less performance analysis in the urban scenario, for their mathematical tractability, but the
corresponding drawbacks may include, e.g., failing to trace the dynamics of UAV’s hori-
zontal movements and simplified shadowing. The A2G channel model suggested by 3GPP
is more suitable to be adopted to generate numerical simulations rather than to analyse sys-

tem performance for BS-UAV transmissions, because of its sophisticated formulation.

1.1.2 Mobility of UAV

Apart from featured A2G wireless channel model compared to terrestrial transmissions
in general, the other essential and notable difference from terrestrial communications is
UAV’s controllable mobility [11, 33-35], which brings us an extra degree of freedom
(DoF) to refine the quality of A2G wireless communications, e.g., mission-oriented navi-
gation for marching UAV to avoid spots where satisfactory wireless coverage performance
cannot be achieved [23, 36] and adaptive deployment for quasi-static UAV whose loca-
tion remains fixed over interested duration to help realize better transmission performance
[17]. For taking advantages of this extra DoF offered by UAV’s mobility to polish wireless
transmissions, e.g., coverage enhancement and expected throughput maximization, there
mainly are two relevant research directions in current literature, i.e., optimal UAV deploy-
ment [30, 37—41] and trajectory design [42—45]. The motivation of seeking optimal UAV
placement is inspired by the fact that UAV’s flying altitude affects both LoS probabil-
ity and pathloss strength of A2G link between transceivers, e.g., higher altitude leads to
greater chance of establishing LoS A2G channels, however, the corresponding degree of

pathloss will be enlarged consequently due to longer propagation distance. Hence, com-
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pared to terrestrial deployment, optimal UAV placement has to consider one more factor
apart from horizontal deployment, i.e., the adjustable flying altitude of UAV that directly
poses impacts on channel characteristics of A2G links. In addition to the perspective of
optimal deployment for quasi-static UAV, trajectory optimization focuses on fully utiliz-
ing UAV’s configurable mobility to optimize wireless communication quality via design-
ing UAV’s flight trajectory from a launching point to a destination, which could be more
challenging because more factors, e.g., propulsion energy budget, flying time cost, colli-
sion avoidance and channel varying caused by dynamic location changing, are supposed
to be carefully taken into account. It is worth noting that exploiting mobility to enhance
wireless transmission quality is not at all a new idea rising from UAV-aided networks,
which has been widely investigated in several terrestrial transmission scenarios, €.g., mo-
bile ad-hoc network and mobile robotics. Their key differences can be briefly drawn as: 1)
terrestrial moving equipments have to consider the obstructions on the 2-dimensional (2D)
ground that limits the flexibility of path planning, compared to UAV flying in 3D airspace
where much fewer physical obstacles are expected to be encountered; and 2) UAV can
help achieve LoS-dominated A2G wireless links that benefit conducting channel predic-
tion, while ground-based mobile nodes usually suffer from greater scattering and fading.
In short, UAVs are able to offer more flexible mobility and stronger A2G wireless chan-
nels, thus more satisfactory trajectory design may be achieved.

Unfortunately, continuous time horizon implicates infinite location possibilities, veloc-
ity constraints and other variables if included for UAV trajectory optimization. To make
UAV path planning mathematically tractable, it is of essence and non-trivial to discretize
UAV trajectory as well as other related constraints [17, 46]. There are two major trajectory

discretization approaches widely applied in current literature, shown as

e Path Discretization: This method aims to cut UAV’s path into several consecutive
and length-unequal segments, in the scenario of unknown total flight time. Then,
the continuous trajectory can be interpreted as a sequence of segments’ initial/end

coordinates and the consumed time duration within each segment [47].
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e Time Discretization: This approach evenly divides the considered time horizon that
may be a known parameter into several time slots, where the slot-length should be
chosen as a sufficiently insignificant value and thus UAV’s location within each time
slot can be treated as unchanged. Therefore, flight trajectory can be approximated

by a sequence of locations associated with the consecutive time slots [36, 48].

Al-Hourani et al. [30] considered an optimal UAV placement problem for maximizing
coverage radius provided by a single UAV, where the optimal UAV altitude was derived.
Mozaffari et al. [38] designed UAV deployment for optimizing total coverage area of
given amount of UAV-BSs, in which directional UAV antenna model was adopted. He
et al. [39] proposed a joint UAV altitude and beamwidth design for achieving through-
put optimization, where specific impacts of UAV altitude on three representative multi-
user transmission scenarios were analysed. To maximize the number of covered users
with minimum transmit power cost, Alzenad et al. [40] proposed a convex optimization
based UAV-BS placement algorithm after decoupling vertical placement from horizontal
deployment and transforming the formulated optimization goal into a second order cone
problem. Hu et al. investigated joint optimization problems on energy consumption and
path planning for scenarios of UAV-aided legitimate monitoring [42] and covert UAV-on-
UAV video tracking and surveillance [43], where the specific optimization goals were both
solved via convex optimization techniques. Zhao et al. [44] considered a multi-UAV path
planning problem for energy-efficient content coverage, in which a decentralized learning
algorithm was proposed to decouple the formulated problem into two stochastic games and
then find the equilibrium that can help expose the optimal trajectory. Cheng ef al. [26]
studied a joint optimization goal on UAV trajectory and time scheduling for maximizing
minimum average secrecy rate of UAV-relaying networks with catching, to achieve which
an iterative algorithm aided by successive convex approximation (SCA) was designed.
To maximize minimum harvested energy for ground users within UAV-mounted wireless

power transfer network, a UAV trajectory optimization problem under constraint of maxi-
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mum flying speed was investigated in [45], where iterative solution with the help of convex

optimization was proposed to accomplish the harvested energy optimization task.

1.1.3 Cellular-Connected UAV

In current markets, UAVs are mainly communicating with their ground-based pilots via
simple point-to-point (P2P) links over unlicensed spectrum, e.g., the industrial, scientific
and medical (ISM) band at 2.4 GHz, which leads to inferior A2G transmission perfor-
mance including low data throughput, limited communication range and interference vul-
nerability [4]. For realizing large-scale deployment of UAV and further improving A2G
communication quality, one promising approach is to integrate UAVs into worldwide-
deployed cellular networks as aerial user equipment (UE), leveraging powerful ground
BSs to serve UAVs, which is termed as cellular-connected UAV solution [23, 36, 49].
In contrast to P2P aerial-terrestrial communications, cellular-connected UAV technique
can help establish beyond visual and radio LoS (BVRLo0S) communications between ter-
restrial BSs and UAVs, which is beneficial for realizing long-distance UAV application
without range limitation, not to mention other advantages such as enhanced performance
of reliability, security, transmission rate and coverage. Besides, cellular-connected UAV
is cost-effective because countless cellular BSs worldwide can be reused to support A2G
communications, with no requirement on dedicated infrastructure reconstruction. Further-
more, cellular-connected UAV solution may have the potential to encourage the emerging
of new business opportunities for not only UAV industry but also cellular operators. Last
but not least, in contrast to conventional UAV navigation approaches that are mainly de-
pendent on global position system (GPS), cellular-connected UAV can help realize more
robust UAV path planning performance, via invoking cellular signals to compensate GPS
coverage where satellites may fail to support satisfactory UAV navigation.

However, the existing cellular networks are exclusively established for serving ground
UEs, barely considering aerial UEs. As depicted in Fig. 1.2, antennas at BSs in current

cellular networks are conventionally downtilted towards the ground for mitigating terres-
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Fig. 1.2 An illustration of serving lobes for cellular-connected UAV

trial inter-cell interferences (ICIs), which means that UAVs can only be served via the
sidelobes and satisfactory A2G connections cannot be guaranteed in general [36, 50]. To
investigate wireless coverage support of current cellular network for UAVs, Lyu et al. [51]
proposed a novel analytical framework for characterizing A2G uplink/downlink transmis-
sions, where downtilted vertically-directional radiation pattern of BS’s antenna is taken
into account. From the viewpoint of forthcoming 5G or 6G cellular networks, the main
serving objects are still ground UEs, which means that finding a proper way of involving
UAVs into cellular networks without posing negative impacts on terrestrial transmissions
is inherently of importance. In fact, integrating drones into the existing cellular networks
has already been one of the most important research directions, which is believed to fur-
ther release the potentials of UAV-aided network in terms of reliability, coverage, through-
put and quality-of-experience (QoE). Unlike terrestrial cellular transmissions where NLoS
pathloss appears more frequently, LoS-involved A2G links play the role as a double-edged
blade. On one hand, LoS-dominant A2G links can help relieve the sufferance of severe
multi-path fading, shadowing and pathloss, which are very common “illnesses” in terres-
trial transmissions due to vast existence of blockages, e.g., buildings, pedestrians, vehicles
and trees. On the other hand, it may make drones generate stronger interferences (or suffer
more severe interferences) to (or from) BSs in the uplink (or the downlink) transmissions.
Besides, drones can cover larger region for data transmissions due to their high flying al-

titudes, then greater macro-diversity gain can usually be achieved because more BSs can
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cooperate to enhance A2G communication qualities in terms of, e.g., throughput and re-
liability. Unfortunately, more co-channel interfering sources for drones in the downlink
might be involved as well (or UAVs can act as the interferers to more ground UEs in the
uplink). Therefore, interference coordination issue for cellular-connected UAV networks
is more intricate and must be seriously treated. Various interference management strate-
gies have been investigated in the literature for terrestrial cellular transmission scenario,
e.g., inter-cell interference coordination (ICIC) [52, 53], cognitive beamforming [54] and
coordinated multipoint (CoMP) communications [55]. However, conventional interfer-
ence mitigation techniques for terrestrial transmissions are most likely ineffective to han-
dle more sophisticated interfering environment caused by UAVs with LoS-dominant A2G
links and larger coverage. Therefore, interference management approaches that are adap-
tive to cellular-connected UAV networks should be delicately designed to achieve efficient
spectrum sharing with coexisting ground UEs. Up to date, there exist several related works
devoted to offering interference management approaches for cellular-connected UAV net-
works [3, 4, 56-58]. Mei et al. [3] studied interference mitigation issue in uplink commu-
nication from a UAV to BSs, where weighted sum-rate of the UAV and ground UEs was
maximized via jointly optimizing uplink cell association and power allocation. Liu et al.
[4] proposed a new cooperative interference cancellation strategy for multi-beam cellular-
connected UAV uplink transmissions, in which co-channel interference elimination and
sum-rate maximization were investigated with the help of transmit beamforming design.
Chandhar et al. [57] leveraged multiple-input multiple-output (MIMO) technique to deal
with interference coordination problem of single-antenna UAV swarms served by a multi-
antenna BS. Senadhira ef al. [58] studied the impacts of UAV’s trajectory and altitude
for uplink non-orthogonal multiple access (NOMA) cellular-connected UAV network, in
which ICI issue was dealt with NOMA technique.

On the other hand, the controllable mobility feature of UAV as mentioned in Subsec-
tion 1.1.2 makes it possible to enhance A2G transmissions for cellular-connected UAV

via trajectory optimization. Zhang et al. [49] studied cellular-connected UAV’s mission
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completion time minimization problem via invoking graph theory and convex optimiza-
tion to design the optimal flying trajectory from an initial location to a destination, subject
to connectivity constraint of the A2G link. Zhan et al. [59] maximized data uploading
throughput for cellular-connected UAV under constraints of energy cost and minimum
transmission rate threshold, via path planning with the aid of SCA technique. Bulut et al.
[60] proposed a dynamic programming solution to help cellular-connected UAV find the

best travelling path, subject to a continuous disconnection duration restriction.

1.2 Covert Communications

With rapid development of 5G wireless networks and Internet of Things (IoT), rocketing
sorts and amounts of private information, e.g., location data, control orders, social iden-
tity information, e-health indexes, are needed to be shared wirelessly among transceivers.
Consequently, growing concerns have been pouring onto security and privacy (low prob-
ability of being detected) of wireless transmissions. Traditional information-theoretic se-
crecy transmission strategies, e.g., physical layer security, are dedicated to protecting the
legitimate messages from being extracted and then revealed to adversary parties, while
conventional cryptography aims to present the adversary with a sophisticated problem
from which the adversary is not able to decode the protected data due to unbearable com-
putational burden. However, the aforementioned approaches fail to protect the privacy of
legitimate transceivers because although they can help mitigate secure transmission threats
via protecting the contents of emitted signals from being revealed, they overlook the pri-
vacy issue and thus could not help hide the existence of transmitted messages from being
detected in the first place. To facilitate the privacy issue of wireless transmissions, covert
communications are considered as a promising technique to hide the legitimate messages
from being detected by adversary wardens, i.e., helping the legitimate signals achieve low
probability of being discovered [61, 62]. The importance of covert communications be-
comes more significant for scenarios where no matter how securely the desired contents

are guaranteed from being deciphered, the exposure of signal emitting may lead to devas-
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tating menace, e.g., military applications where even assuming that the wireless messages
are perfectly encrypted, the meta-data such as network traffic pattern, may leak vital infor-
mation to the enemies. If the adversaries cannot detect the occurrence of wireless trans-
missions, even supposing that they have unconstrained eavesdropping power, they get no
opportunity to lunch adversary attacks. Fig. 1.3 delivers an intuitive illustration of covert
transmissions, where a transmitter is trying to broadcast wireless messages to the intended
receiver whilst the Warden keeps detecting the occurrence of signal transmissions.

Receiver
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Fig. 1.3 A typical scenario of covert communications

The famous Square Root Law, which indicates the fact that © (ﬁ ) bits of informa-
tion can be transmitted reliably and covertly in n channel uses over additive white Gaussian
noise (AWGN) channels as n — +o0, was initiated in [63]. Besides, Goeckel ef al. [64]
proved that it is possible for the transmitter to covertly send © (ﬁ ) bits to the intended
receiver, when the Warden has no exact knowledge of its noise power. Additionally, covert
communication problems have been studied in the field of wireless relaying networks [65—
67]. Hu et al. [65] examined the possibility, performance limits and associated costs for
a power-constrained half-duplex (HD) relay transmitting covert information on top of for-
warding the source’s information, while the possibility and achievable performance of low
probability of detection in one-way HD relay system were examined in [66], in which rate-
control and power-control transmission strategies were considered, respectively. Wang et
al. [67] investigated how channel uncertainty can influence covert communication perfor-
mance in wireless relaying networks. In the field of UAV-mounted wireless transmission

systems, Zhou et al. [46] solved a joint optimization problem on UAV’s transmit power
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and path planning, aiming to maximize UAV’s expected covert transmission rate via SCA

approach, under constraints of transmission outage threshold and covertness requirement.

1.3 Simultaneous Wireless Information and Power Trans-
fer

Conventionally, wireless communication systems are powered by rechargeable battery or
electrical grid, such as cellular, Bluetooth, Wi-Fi and sensor networks. There are sev-
eral distinguish physical or/and economic disadvantages of these traditional power supply
methods for wireless communications, which has been the bottleneck restricting ubiqui-
tous applications of wireless communications [68]. More precisely stated, grid-powered
wireless communication systems, e.g., cellular networks, require solid support of electrical
grid infrastructure, which may not only need much more construction resources but also
lead to enormous energy consumption; while the operational lifetime of battery-enabled
wireless networks is inevitably limited, for finite battery capacity in practical applications,
leading to periodic battery replacement or recharging. To prolong the lifetime of wire-
less networks and lift energy efficiency, the research on energy-aware architectures and
transmission strategies has been a hotspot in recent years.

Energy harvesting (EH) technique is able to scavenge energy from natural resources,
e.g., solar power, piezoelectric energy, wind and mechanical vibrations, which is known
as a promising candidate to overcome the aforementioned disadvantages of the traditional
power-supplying solutions. Unfortunately, the amount of energy harvested from natural
resources highly depends on several uncontrollable factors, such as weather condition, re-
sulting in EH unreliability. To aid this, a promising method collecting energy from man-
made radio frequency (RF) signals has gained lots of research concentrations [69—73].
Inspired by the fact that RF signals can carry the intended information and radiation en-
ergy at the same time, the concept of simultaneous wireless information and power transfer

(SWIPT) was coined in [74]. Thereafter, two practical SWIPT strategies were introduced
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in [75], i.e., time-switching (TS) and power-splitting (PS) based SWIPT, in which mis-
sions of information decoding (ID) and EH are conducted respectively in time or power
domain as illustrated in Fig. 1.4. Specifically, the TS-based method allocates part of the
time slot to decode information and the remaining to harvest energy, whereas one portion
of the received signal power is utilized for ID and the other potion is used for EH in the PS-
based strategy [76]. In general, PS-based SWIPT can gain more spectral efficiency (SE)
than its TS-based counterpart, via consuming less time slots. Based on these practical
SWIPT strategies, various essential issues about SWIPT were studied in different wireless
transmission systems, e.g., maximizing the ergodic rate for a dynamic SWIPT approach in
the cooperative cognitive radio network (CCRN) [77], a non-cooperative game-theoretic
approach for the resource optimization in SWIPT-enabled heterogeneous small cell net-
work (HetSNet) [78] and optimizing the energy efficiency (EE) by delicately designing

the precoders at the transceivers in MIMO two-way wireless networks [79].

amT

[>_) = > Passive
EH D PS Unit

> > Passive
(1—an)T
= > ID l> PS Unit

(a) Architecture of TS receiver (b) Architecture of PS receiver

Fig. 1.4 Typical architectures of SWIPT receivers, where T' indicates transmission block
duration, a represents TS factor, f means PS factor and subscripts m/n are denoted to index
different antennas.

One popular SWIPT application is SWIPT-aided relaying networks, which can not
only help solve power supply problem for energy-limited relay, but also take advantages of
information-energy trade-off. However, most existing works on SWIPT-assisted relaying
networks are constrained to HD relay, theoretically resulting in 50% SE loss. Full-duplex
(FD) technology, which allows transceivers emit and receive information simultaneously,

can potentially achieve efficient utilization of wireless resources, i.e., time and frequency,
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and thus it is expected to overcome the shortcomings of its HD counterpart on SE [69, 80].
Therefore, lots of research have been devoted to integrating FD relaying (FDR) techniques
into PS-based SWIPT to overcome energy deficiency and enhance the utilization efficiency
of wireless resources [81, 82]. Wang et al. [81] investigated characteristics and perfor-
mance of PS-based two-way SWIPT FDR networks as well as the relay selection issue.
Liu et al. [82] examined the outage probability and average throughput performances in a

PS-based SWIPT FDR wireless network.

1.4 Machine Learning

As an important and crucial subfield of artificial intelligence (AI), machine learning (ML)
is famous for enabling machines, e.g., computers, to learn features, trends and patterns
from the focused environments or datasets and thereafter making predictions and deci-
sions without being explicitly programmed, instead, by experiences and data. Up to date,
ML algorithms have been widely and successively utilized in various application cases,
e.g., natural language processing (NLP), computer vision (CV) and traffic prediction, self-
driving vehicles, email spam & malware filtering, medical diagnosis and fraud detection.
In general, depending on the feedback available to the learning agent, ML algorithms are

commonly sorted into the following three categories.

o Supervised Learning & Semi-Supervised Learning: Roughly speaking, the task of
supervised learning is to realize generalization, via training with labelled data, i.e.,
the dataset used for learning involves desired “answers”, e.g., support vector ma-
chine (SVM), decision tree and random forest for classification, and linear regres-
sion, logistic regression and polynomial regression for regression. On the other
hand, semi-supervised learning is an approach that is fed with a small amount of la-
belled data and a large amount of unlabelled data when being trained, which is more
cost-effective, especially for circumstances where the dataset is extremely large and

it is unaffordable to label all elements in the dataset. A representative case of semi-
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supervised learning is medical image diagnosis, where a small number of labelled

images for training can help achieve a satisfactorily high diagnosis accuracy.

o Unsupervised Learning: The goal of unsupervised learning is to cluster and com-
press, through learning from untagged data, 1.e., finding structures or classifying the
information from the inputs, e.g., k-means clustering for market segmentation, prin-
cipal component analysis (PCA) for reducing redundancy, singular value decompo-
sition (SVD) for dimensionality reduction and autoencoder for removing noise from

visual data.

e Reinforcement Learning: The aim of reinforcement learning (RL) is to act, via learn-
ing in a trial-and-error fashion. RL differs from supervised leaning in the manner of
not requiring tagged input/output pairs of dataset and not needing suboptimal actions
to be explicitly amended. There is no right answer for RL in the dataset, instead,
the RL agent learns to direct itself to get greater amount of accumulated-rewards.

In the case that no dataset is given, RL agent is bound to learn from experiences.

14.1 RL

Standard oft-line optimization approaches, e.g., convex optimization, solving metric max-
imization/minimization problem for UAV-aided networks, e.g., radio resource allocation
and trajectory design, suffer from inefficiency due to non-convex nature of the formulated
optimization objective and the corresponding constraints, even under impractical assump-
tions where perfect knowledge of wireless environment is available, e.g., A2G channel
model and BS antenna model. Fortunately, RL serves as a good complement to tradi-
tional off-line optimization solutions, which is famous for the favourable ability of learn-
ing unknown environment in a trial-and-error manner [83]. In recent years, RL-related
techniques have been widely applied to help solve performance optimization problems
for UAV-mounted networks, e.g., radio resource allocation, interference mitigation and

path planning. Cui er al. [84] investigated a real-time design on resource allocation for
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multiple-UAV network, in which multi-agent reinforcement learning (MARL) framework
was proposed to realize optimal user selection, power allocation and sub-channel asso-
ciation. Zeng et al. [36] investigated an optimal UAV trajectory planning problem on
minimizing the weighted sum of mission completion time and expected transmission out-
age duration, via deep RL (DRL)-aided approaches.

In the field of RL, there are two core components, i.e., Agent and Environment. Specif-
ically, the agent refers to “solution” that generates decisions or actions to tackle sequential
decision-making problems with uncertainty, while the environment is a representation of
the “problem” that delivers responses, e.g., next state, immediate reward and state tran-
sition, to the selected action from the agent for given state. The RL agent and the envi-
ronment are interacting with each other proactively so that the agent can learn to achieve
more significant accumulated-rewards via making more suitable actions for each possi-
ble state. The diagram of agent-environment interaction is depicted in Fig. 1.5, in which

t=0,1,2,-- € Z denotes discrete time step of a sequence.
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Fig. 1.5 The diagram of interaction between RL agent and environment

The training of RL agent is based on Markov decision process (MDP) consisting of

five components listed in a tuple (8, &/, 7, r, y), shown as follows.

e &: astate s, € & denotes RL agent’s observation at trial 7, where observations

characterize the information of environment.

e J/: an action a, € o represents the agent’s choice at trial ¢ following an action

selection policy z. An action is selected and evaluated by the agent for every trial
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alongside the learning process, leading state transition s, — s,,;. Then, a reward
will be generated, which reflects the immediate impact of a, given s,. The policy
w(s;a,) @ 8 X d — [0, 1] claims the probability distribution of picking action a,

for state s,, constrained by Zated (s, a,) = 1.

T : after taking an action, the state transition function 7=Pr(s,,1s;, a,) P EXA X
& — [0, 1] captures state transition s, — s,,;. When J is not available, the MDP
can still be solved via temporal difference (TD)-based approach, which claims the

“model-free” learning progress.

r: an immediate reward r,(s,, a;) acts as performance metric determining how good

the selected action a; is, given state s,.

y: ascale factor y € [0, 1] is applied to discount the future reward, which measures
how much the agent cares about the rewards in distant future. More variances will
be generated by the reward function with the expanding of time horizon, while the
discount factor y can help reduce such uncertainty and realize the convergence of

RL algorithm.

As illustrated in Fig. 1.5, while interacting with the environment, the RL agent chooses

an action a, for observed state s, at trial 7 following current action selection policy 7 (s;, a,).

After executing the selected action, state transition s, — s,,; occurs and a scalar reward

r,(s;, a;) will be generated. Then, the experience exp;, = {s,,a,,r;, 5,1} can be collected

to train the RL agent. The state-action value function Q _(s,, a,), i.e., Q function, derives

the discounted accumulated-rewards and reflects the long-term return of acting a, over s,

following current action selection policy z, given by

+0o0
0,(s;,a) =E, |G, = Z Y"1 n |5 = 5,0, = a|, (1.1)

n,=0
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where G, calculates the discounted accumulated-rewards. The state-action value function

0,.(s,, a,) satisfies the Bellman equation, shown as

Q,(spa) =E|r +vy Z T (8141151, a,) Z T(S141 e )O(Sipr> ) |- (1.2)
$1+1E€S a1 €Y
The RL agent aims to find the optimal policy 7* which is expected to maximize the
long-term return, i.e., Q*(s;, a,) = maxQ,(s,, a,). In the case of known optimal Q function
T

Q*(s,, a;), the optimal action selection policy can be given by

z* [s,,a, = arg maxQ*(s,,a)l =1. (1.3)
acd

Therefore, an important goal of RL agent is to find the optimal Q function which fol-

lows Bellman optimality equation [85], shown as

Q*Gpa)=r,+y D T(s41ls,a,) max Q% (s,y1.apy1). (1.4)
= a1 €A

Unfortunately, (1.4) is non-linear and admits no closed-form solution, which can al-
ternatively be solved through iterative algorithms [86]. Specifically, (1.4) can be deduced
recursively to achieve the optimality Q*(s,, a,), via TD learning when the knowledge of
explicit reward and state transition models are absent, or through dynamic programming,
e.g., value iteration, when the agent possesses full information of the MDP. The estima-
tion of Q function can be gradually polished by directly interacting with the environment
and sampling the experience sequence exp,, which applies the recursive updating rule on

Q function Q(s;, a,), given by

temporal difference
A\

estimate of optimal future value
7\

r N
O(spa) < O(spa)+ay | rp+y  max O(s;y.a41) —Q06na)|,  (1.5)
a1 €L ——
updated Q value old value A ~  old value

P
new value (temporal difference target)




1.4. Machine Learning | 20

where a;, € (0, 1] denotes the learning rate. It is well-known that the optimum Q*(s,, a,)
can be achieved when the state-action pairs are sufficiently experienced and the learning
rate is properly chosen [85]. From (1.5), it is straightforward to find that the updated Q

value is a sum of the following three components.

° (1 - a,r) O(s;, a,): the old Q value weighted by a learning rate related factor, which
implies that a smaller learning rate leads to less amount of Q value change, while a

greater one results in more rapid Q value update.
e «,,r,;: the immediate reward weighted by the learning rate.

® ajy max O(5,41, a;41): the estimate of optimal future value weighted by the learn-
t+1

ing rate and the discount factor.
Therefore, the learning rate claims the step size of Q value update, determining how much
the newly acquired information overrides its old counterpart.

In what way the environment reacts to RL agent’s actions is known as the model, which
may or may not be available for the agent. In the case of known model, it is referred as
model-based RL, and on the contrary, it is called model-free RL. For model-based RL,
the accurately optimal solution can be found via dynamic programming. Instead, model-
free RL does not require a prior knowledge of the environment that it is interacting with.
The major pro of applying a model is that it enables the agent to foresee what would
the environment react for a bunch of executed actions and then the agent can gain better
performance on sample efficiency. When the model is not available which is a common
case in practice, if one prefers to still use model-based RL, then the RL agent has to learn
the model from experienced transitions. However, despite of the extra complexity for
learning a model, the bias of currently learnt model could mislead the agent to commit poor
policy, especially, in the early training stage when the learnt model cannot well describe the
real environment. Although model-free RL cannot reach as high sample efficiency as its
model-based counterpart, it is usually easier to be implemented and tuned, and thus more

popularly used. To realize training model-free RL agent, three common and widely used
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approaches are policy-based, value-based and actor-critic solutions. Specifically, policy-
based RL solutions directly learn the policy that maps states to actions, while valued-based
RL algorithms indirectly learn the state value function or Q function, where the state value

is defined as

Vo(s) = Egon [Qnls1a)] (1.6)

which specifies the expected return, i.e., discounted accumulated-rewards, starting from
state s, following a policy z. Then, another important and typical function, named advan-

tage, can be deduced as

A (s;,a,) = Q. (s;,a,) = V,.(s)), (1.7)

which quantifies how much better taking action a, for state s, over the average value of

randomly picking actions following the policy 7.

RL algorithms

|
| |

Model-free RL Model-based RL

| |
| | | |

Policy-based solution  Value-based solution Model-learning solution Model is accessible

~

Actor-critic solution

Fig. 1.6 Taxonomy of RL algorithms in terms of model availability

Tabular RL, e.g., Q-learning, is a widely applied and simple value-based framework to
solve MDP-related problems, in which the tabular Q-table is the key component recording
Q values for possible state-action pairs. In tabular RL, the agent is supposed to interact
with the environment consistently and converge to the optimality Q*(s,, a,) via recursively
updating O(s,, a,) as mentioned in (1.5). Unfortunately, this table-based RL method suffers
from the curse of dimension, i.e., it becomes inefficient if the state space and/or the action
space are huge (or, even continuous). To crack this nut, instead of applying Q-table to

store O(s,, a,) for each state-action pair, function approximation technique is invoked to
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approximate the Q function, e.g., linear combinations of features, decision tree, nearest

neighbours and artificial neural networks (ANNs).

1.4.2 Deep RL

Hidden Layers

Inputs
Outputs

Machine Learning empowers machines to solve problems via learning from, usually, dataset

Semi-Supervised

ised L X
Learning Unsupervised Learning

Supervised Learning

Deep Learning Deep Reinforcement Learning Reinforcement Learningw
, Incorporates deep learning into learns from reward signals
e m ultiple layer: 5, to the framework of reinforcement a ; ;
progressively extract higher- learning, representing the polic) W'h//e nteracting with thg
g, repi G e ey environment, to make optimal

level features from the raw input S S S W .
neural network

decisions for observations

Fig. 1.8 The relationship between DRL and other Al approaches

Intuitively, DRL is a composition of RL. and ANNs, where “deep” refers to ANN with
multiple hidden layers. ANN is one of popular and powerful Q function approximators,
which has been theoretically proved being able to universally imitate any function (linear
or non-linear), even with only one single hidden layer consisting of a sufficiently large

number of neurons [85]. In general, ANN with multiple hidden layers, i.e., DNN [87], is
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Fig. 1.9 An example of how neuron generates its output

Table 1.1 Comparison on popular activation functions

Name | Function f(x) | Derivative f'(x) | Range
Linear cx c (=0, )
Sigmoid 1/(1+e™) fOO)[1—=f(x)] | (1)
Hyperbolic tangent (Tanh) | (e* —e™)/(e* +e7)| 1 = f(x)? (-1,1)
0, <0
Rectified linear unit (Relu) max{0, x} 1 x 0 [0, o0)
, x>

more suitable for approximating complex functions, of which Fig. 1.7 delivers an example
of typical architecture. To show a clear picture of the relationship between DRL and other
Al methods, the corresponding diagram is illustrated in Fig. 1.8. In DNN, each neuron,
commonly except that in the input layer, exploits specific activation function to generate
its output after calculating the weighted sum of its inputs and bias. Fig. 1.9 demonstrates
a simple instance of the way how DNN’s neuron calculates its output, where the output
can be mathematically expressed as
N
y=f (w1x] + wyxy + w3x3 +b) = anxn+b|N 3]. (1.8)
n=1
The activation function is commonly posed to break the linearity of weighted sum of inputs
and bias in (1.8), which introduces non-linearity into neuron’s output and therefore can
help learn high-order polynomials, though there is one specific activation function named
Linear that is proportional to its input and does not introduce non-linearity. As per the
famous Universal Approximation Theorem [88], a neural network with two layers is proven

to be a universal function approximator, in the case that the involved activation functions
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are non-linear. Table 1.1 compares properties of several widely used activation functions
in the field of deep learning. Besides, the bias in (1.8) is a constant factor offsetting the

output, which can help enhance flexibility and generalisation for neural network.

Deep Q Network

In a representative value-based DRL method termed as deep Q network (DQN) [89], the

Q value is approximated in a parametric manner with parameter vector 6, shown as

O(s;,a;) = O(s;,a,10), (1.9)

where 0 corresponds to the weight coefficients and biases of all links in the DNN. The
DNN-based function approximation (1.9) generally introduces two distinguishable advan-
tages over tabular RL method: 1) it enables generalization, which is able to predict Q val-
ues for inexperienced state-action pairs because state-action pairs are mutually coupled via
0O(s;, a,|0) and 0; and 2) only the parameter 0 is necessary to be learnt, rather than record-
ing and updating Q values for state-action candidates, which can tremendously relieve the
computing burdens. Fig. 1.10 depicts a simplified but representative demonstration of the

interaction between DQN and environment.

Observation
|
St The DON  Q(st,a¢6)
The Environment
Action
St — St41
Parameter Vector 6

1 Reward

Fig. 1.10 The interaction between DQN and environment
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In DQN, the parameter vector 0 in (1.9) can be updated via bootstrapping method to

minimize the loss function /oss(6) which is defined as

2
ZO)=|r,+y maéiQ(sH_l,aH_llO) - 0(s4,a,10)] . (1.10)

1€

Unfortunately, the loss function (1.10) is contaminated by the updating parameter vector
0, leading to oscillations or divergence when applying standard deep training approaches.
This nut can be cracked via adopting target network, denoted as Q(s,, a,|0") with pa-
rameter vector @~ [89]. Note that the target network Q(s;,a,|07) is just a copy of the
training network Q(s,, a,|0), where the updating frequency of 0~ is much less than that
of 0. Specifically, the target network will be synchronized to the training network with
a given frequency, in terms of updating 8~ « 6. Then, the loss function (1.10) can be

reformulated as

2
ZO)=|ri+y ma&Q(s,_H,a,_HlO_)—Q(s,,atle) . (1.11)

1€

Other common obstacles encountered by DQN are highly correlated data in time do-
main and large variance of the updates, which can be relieved via involving experience
replay buffer and mini-batch updating technique. The experience replay buffer is a finite-
sized memory storing experienced transitions {s,, a;, ;, s;,1 }, while mini-batch updating
method randomly samples multiple experiences from the experience replay buffer to per-
form DNN updates.

To further enhance learning performance of DQN, several advanced DRL algorithms
were proposed, e.g., double DQN (DDQN) and duelling DQN. Specifically, DDQN ap-
proach can help relax the maximization bias brought by max operation in (1.11), via allo-
cating action selection and action evaluation into separate networks [90]. Besides, duelling
DQN technique decouples state value and state-dependent action advantages into differ-
ent streams, which is able to offer better policy evaluation quality, especially, for learning

tasks containing large number of similar-valued actions [91].
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Actor-Critic DRL

In the case of facing problems involving continuous action space, value-based DRL algo-
rithms become inefficient, as it is extremely challenging to locate the maximum Q value
over continuous action space. To deal with this obstacle, policy gradient approach and
actor-critic architecture are invoked. Deep deterministic policy gradient (DDPG) intro-
duces actor-critic architecture into DQN, which is model-free and off-policy [92]. In
DDPQG, the actor is a deterministic policy network which takes states as inputs and re-
produces a specific action, instead of a probability distribution over possible actions. The
actor network eliminates the need of locating the action maximizing the state-action func-
tion given the next state, which can robustly solve problems with continuous action space.
Besides, the critic is a state-action value network, in which action and state are treated
as the input and state-action value is the corresponding output. Fig. 1.11 shows a brief

demonstration of the interaction between actor-critic agent and environment.
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Fig. 1.11 The interaction between actor-critic agent and environment

However, DDPG may suffer from one common and fundamental obstacle, i.e., overes-
timation bias induced by unavoidable function approximation errors, which is then propa-

gated through the Bellman equation and can result in broken policy. To relieve the afore-
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mentioned side-effect, twin delayed DDPG (TD?3) algorithm [93] introduces three tech-

niques to further improve the performance of DDPG, shown as follows.

e Target Policy Smoothing: To compute the target of critic network’s loss function,
unlike DDPG approach, TD3 adds additional noise to the action chosen by the target
actor network for the next state. Note that target policy smoothing technique serves
as a regularizer for TD3 algorithm, which is designed to smooth the estimated Q
values over similar actions and thus can help address the overfit issue caused by

some actions with sharp-peak estimations of Q value.

e Clipped Double Q Learning: In contrast to DDPG approach where one single critic
network is applied to estimate the Q function, TD3 maintains two critic networks,
i.e., the twin, and utilizes the critic network with smaller estimated Q value to form
the target of loss function. Specifically, both critic networks of TD3 algorithm are
updated via stochastic gradient descent approach to minimize their loss functions
with the same target. Note that the clipped double Q learning technique can help
relieve the overestimation issue via adopting the smaller estimated Q value of twin

critic networks to realize critic network updates.

e Delayed Policy Updates: Like DDPG, the actor network of TD3 algorithm is up-
dated to maximize the expected return via gradient ascent approach, where the ex-
pected return’s gradient is calculated via the chain rule [92]. However, in TD3, the
actor network, the target actor network and the target twin critic networks are up-
dated less frequently than the twin critic networks, which can help damp the volatil-

ity issue in policy gradient algorithms.

Both DDPG and TD3 learn deterministic policy and thus output a deterministic action
for given state, while soft actor-critic (SAC) approach [94] optimizes a stochastic policy
that is essentially in the form of a parametric probability distribution over actions. Incor-

porating TD3, SAC applies clipped double Q learning as well. Besides, rooting from the
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stochasticity of its being trained policy, SAC benefits from an innate variant of target pol-
icy smoothing. The core feature of SAC is the application of entropy regularization that
is beneficial for better dealing with the dilemma of exploration and exploitation, which
means that SAC maintains the policy to optimize a weighted sum of expected return and
the policy’s entropy, instead of sorely focusing on maximizing the expected return like

DQN, DDPG and TD3. Note that the entropy here measures randomness in the policy.

1.4.3 Multi-Step Learning

Standard DRL algorithms apply one-step information to calculate the loss function (1.11)
and train the online network, which may not be adequate and thus lead to poor predictabil-
ity. Monte Carlo related approaches invoke all future state-action pairs to update the on-
line network, but the computation burden could be extremely unbearable. To commit a
good balance between one-step learning and Monte Carlo aided counterpart, multi-step
learning strategy [85] was proposed via taking N, -step-forward knowledge into account.
Multi-step learning is prone to help achieve more satisfactory learning performance, with
a delicately chosen step-length N,,.. Specifically, the N, -step discounted accumulated-

N,

-1
ms n
Y e, 1 Based

reward from a given state s, can be rewritten as r,.,, y = Y "L
SN =

on (1.11), the loss function for N, -step learning can be derived as

2
Z(0) = PN, T VNmsngéQ(St+Nms"’/|9_) - 0(s4,a,10)] . (1.12)

1.4.4 Prioritized Experience Replay

In the simplest RL framework, the experienced transition exp, is utilized only once and
then discarded after the parameter (of policy, value function or model) updating, which
brings two shortcomings: 1) inefficient transition sampling, implying that some rare but
meaningful transitions might be forgotten rapidly; and 2) highly correlated transitions,
indicating that the independent and identical transition distribution is contaminated. To

facilitate the aforementioned disadvantages, experience replay (ER) technique storing ex-
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perienced transitions into a finite-capacity buffer was proposed [89, 95]. Then, a mini-
batch of transitions can be sampled to realize the training of DRL agent. The ER makes
it possible to break the temporal correlations of experienced transitions via mixing recent
and former experiences into the replay buffer, which guarantees that rarely experienced
transitions get fairer chances to be utilized. Through scarifying computation and memory
for recording and sampling, ER technique lightens the burden of requiring large number
of experiences for training. However, this compromise is worthy because the interactions
between RL agent and environment are more resource-expensive in general [96].

To further improve the efficiency of ER approach, advanced alternative entitled pri-
oritized ER (PER) was proposed [96], in which the recorded experiences are prioritized
when being sampled from the ER buffer. The reason why PER method works better is
that some transitions are more valuable and meaningful than others for training the agent.
While ER technique frees the agent from processing transitions with the order they are
experienced, PER can help liberate RL agent from recalling experiences with frequencies

proportional to their occurrence probabilities.

1.4.5 Quantum-Aided RL

Quantum theory has been proven to pose a positive impact on improving learning effi-
ciency for Al algorithms in general, and RL-related approaches in particular [97]. Dong
et al. [98] combined quantum parallelism into conventional RL frameworks (termed as
quantum RL (QRL)), in which higher learning efficiency and better trade-off between
exploration and exploitation were showcased. Furthermore, Dong et al. [99] proposed
quantum-inspired reinforcement learning (QiRL) to solve intelligent navigation problem
for autonomous mobile robots, where probabilistic action selection method and novel re-
inforcement approach inspired by quantum phenomenon were integrated into standard RL
frameworks. Fakhari et al. [100] applied QiRL approach into unknown probabilistic en-
vironment, in which the robustness of QiRL solution was demonstrated. Paparo et al.

[101] showed that quadratic speed-up is achievable for intelligent agents, with the help of
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quantum mechanics. Dunjko et al. [102] extended traditional agent-environment frame-
work into quantum region, while Saggio et al. [103] demonstrated the first experimental
result of QRL. Lamata [104] conducted QRL on superconducting circuits with multiple
quantum bits (qubits). Hu et al. [105] solved a representative RL problem, i.e., contextual
multi-armed bandit, via training a quantum neural network with photonic quantum cir-
cuits, illustrating that QRL algorithms can be trained on quantum devices. In [106], Li e?
al. compared QRL with several RL frameworks in human decision-making scenarios, sug-
gesting that value-based decision-making can be illustrated by QRL at both the behavioural
and neural levels. In the field of wireless communications, Li ef al. [107] investigated an
optimal path planning problem for UAV-mounted networks, in which QiRL solution was
demonstrated to offer better learning performance than conventional RL. methods with

e-greedy or Boltzmann action selection policy.

1.5 Motivation, Contribution and Limitation of This The-
Sis
1.5.1 Motivation

Given the promising advantages offered by UAVs for wireless communications and real-
world applications from the perspective of industries as portrayed in Section 1.1, for further
leveraging the potentials of UAV to achieve efficient applications within specific scenarios,
a bunch of technical challenges is in the queue waiting to be delicately tackled, e.g., per-
formance analysis, radio resource management and trajectory optimization. Specifically,
performance analysis of UAV-aided networks can not only enable evaluation of the im-
pacts of design parameters on the overall system performance but also reveal inherent and
fundamental trade-offs among system parameters for guiding the design of UAV-mounted
networks. Besides, radio resource allocation is known as essential and important for estab-
lishing terrestrial wireless transmissions, e.g., ol and cellular networks. Adopting UAVs

into wireless networks pulls unique and challenging difficulties in, due to, e.g., wider cov-
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erage, LoS-involved interferences, severer channel varying and stringent energy budget.
Thus, radio resource management plays the key role for achieving harmonious and effi-
cient adoption of UAV into current terrestrial networks, where UAVs have to coexist with
ground UEs. Last but not least, path planning is of cruciality to take advantages of the
extra DoF provided by UAV’s mobility, which is with no doubt an important research
direction in the field of UAV-mounted networks.

Motivated by the aforementioned observations, this thesis aims to deliver comprehen-
sive, thorough and in-depth research for various scenarios of UAV-aided wireless transmis-
sions, from viewpoints of performance analysis, radio resource management and trajectory

optimization.

1.5.2 Main Contribution

To further unleash UAV’s potentials for aiding wireless transmissions, this thesis concen-
trates on performing performance analysis, radio resource management and trajectory opti-
mization for UAV-mounted networks, where promising wireless transmission techniques,
e.g., SWIPT, covert communications, opportunistic FDR, accumulation-aware EH, trans-
mit beamforming, aerial BS, directional antenna and cellular-connected UAV, are in-
volved, and cutting-edge mathematical tools for conducting performance analysis, opti-
mization or enhancement, e.g., Markov chain (MC)-based stationary distribution, proba-
bility theory, quantum mechanics and DRL, are invoked and applied.

The technical contents of this thesis are segmented into four parts: I) an accumulation-
aware opportunistic SWIPT FD UAV-relaying protocol is proposed in Chapter 2, on which
transmission outage and covert communication analyses are performed with the help of
MC-aided stationary distribution and probability theory; II) radio resource management
for cellular-connected UAV networks is considered in Chapter 3, where a DRL-based joint
ICI mitigation and transmission improvement algorithm is designed; III) a QiRL solution
is coined for helping UAV-BS optimize its travelling trajectory in Chapter 4, where Grover

iteration from quantum mechanics is wrapped to improve efficiency of action selection



1.5. Motivation, Contribution and Limitation of This Thesis | 32

policy for tabular RL framework; and IV) a path planning problem for cellular-connected
UAYV with building distribution aided A2G pathloss model and directional radiation pat-
tern is investigated in Chapter 5, where Grover iteration is adopted to help experience
replay component of DRL commit a better transition sampling performance.

The detailed contributions of this thesis are summarized as follows.

e To enhance transmission performance, privacy level, and energy manipulating ef-
ficiency for UAV-relaying networks, Chapter 2 initiates a novel SWIPT FD UAV-
relaying protocol, termed as harvest-and-opportunistically-relay (HOR). Due to the
FD characteristics, the dynamic fluctuation of UAV relay’s residual energy is diffi-
cult to be quantified or tracked. To circumvent this difficulty, MC theory is invoked.
Furthermore, to improve the privacy level of proposed HOR UAV-relaying system,
covert transmission performance analysis is performed, where closed-form expres-
sions of the optimal detection threshold and minimum detection error probability
are derived. Last but not least, with the aid of MC'’s stationary distribution, closed-
form expression of transmission outage probability is calculated, based on which
transmission outage performance is analyzed. Numerical results have validated the
correctness of analyses on transmission outage and covertness. The impacts of key
system parameters on the performance of transmission outage and covertness are
given and discussed. Based on mathematical analysis and numerical results, the
proposed HOR protocol is validated to not only reliably enhance the transmission
performance via smartly managing residual energy but also efficiently improve the
privacy level of the legitimate transmission party via dynamically adjusting the op-

timal detection threshold.

o Integrating UAVs into the existing cellular networks faces lots of challenges, in
which one of the most striking concerns is how to adopt UAV into cellular net-
works with less adverse effects to ground UEs. In Chapter 3, a cellular-connected
UAV network is considered, where multiple UAVs receive messages from terrestrial

BSs in the downlink, while BSs are serving ground users in their cells. To enhance
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wireless transmission quality for UAV's while protecting ground UEs from being in-
terfered, a joint time-frequency resource block (RB) and beamforming optimization
problem minimizing the ergodic outage duration (EOD) of UAV is investigated. To
solve the proposed optimization problem, a DRL solution is proposed, where deep
double duelling Q network (D3QN) and twin delayed deep deterministic policy gra-
dient (TD3) are invoked to deal with RB allocation in discrete action domain and
beamforming design in continuous action regime, respectively. The hybrid D3QN-
TD3 solution is applied to solve the outer MDP and the inner MDP interactively so
that it can achieve the sub-optimal result for the considered optimization problem.
Simulation results illustrate the effectiveness of the proposed hybrid D3QN-TD3

algorithm, compared to exhaustive/random search based benchmarks.

In Chapter 4, a wireless uplink transmission scenario in which a UAV serves as an
aerial BS collecting data from ground users is considered. To optimize the expected
sum uplink transmit rate without any prior knowledge of ground UEs, e.g., locations,
channel state information and transmit power, the trajectory planning problem is op-
timized via QiRL approach. Specifically, the proposed QiRL solution adopts novel
probabilistic action selection policy and new reinforcement strategy, inspired by
collapse phenomenon and amplitude amplification in quantum computation theory,
respectively. Numerical results demonstrate that the proposed QiRL algorithm can
offer natural balancing between exploration and exploitation via ranking collapse
probabilities of possible actions, compared to the traditional reinforcement learning

approaches that are highly dependent on tuned exploration parameters.

Within cellular-connected UAV networks, a minimization problem on the weighted
sum of time cost and EOD is investigated in Chapter 5. Taking advantage of UAV’s
adjustable mobility, a UAV navigation approach is formulated to achieve the afore-
mentioned optimization goal. Conventional offline optimization techniques suffer
from inefficiency in accomplishing the formulated UAV navigation task due to the

practical consideration on local building distribution based A2G pathloss model
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and directional antenna radiation pattern. Alternatively, after mapping the naviga-
tion task into an MDP, a DRL-aided solution is proposed to help the UAV find the
optimal flying direction within each time slot, and therefore the designed trajectory
towards the destination can be generated. To help the DRL agent commit a better
trade-off between sampling priority and diversity, a novel quantum-inspired expe-
rience replay (QiER) framework is proposed, via relating experienced transition’s
importance to its associated qubit and applying Grover iteration based amplitude
amplification technique. Compared to several representative DRL-related and non-
learning baselines, the effectiveness and supremacy of the proposed DRL-QiER

solution are demonstrated and validated in numerical results.

1.5.3 Limitation of This Thesis

Although this thesis is devoted to delivering in-depth and comprehensive performance

analysis and optimization for UAV-aided networks, it is limited to the following aspects.

e In Chapter 2, the proposed UAV-relaying protocol is designed and examined in the
scenario of three-node wireless transmissions, including one transmitter, a UAV-
relay and one receiver, while more general system model, e.g., multi-node transmis-
sions, is not taken into account due to the consideration of mathematical tractability.
Besides, the small-scale (fast) fading component of A2G links is assumed to be fol-
lowing Rayleigh distribution, which could be impractical in the scenarios where
LoS A2G links are most likely to be experienced. Moreover, rooting from severe
propagation loss of wireless signals and the bottleneck of current EH technology,
the energy capacity at UAV-relay’s primary battery is set as a relatively insignificant
value and UAV’s flying altitude is assumed as a relatively low height in numerical
results, which means that the proposed UAV-relaying protocol may be less effective
for higher UAV’s altitude because the amount of harvested energy is sensitive to
large-scale pathloss related to propagation distance. Lastly, the developed analy-

sis on transmission outage is conducted for arbitrary distances among the involved
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transceivers, while ergodic transmission outage performance over varying distances

1s not taken into account.

In Chapter 3, the proposed optimization algorithm is designed to cover arbitrary
trajectory, while path planning for UAV is not included by assuming that the UAV’s
trajectory is predefined. Besides, the UAV is assumed to occupy one single RB
resource each time, which may constrain the diversity of RB allocation and the cor-
responding optimization quality. Moreover, the formulated optimization problem is
solved via uncoupling it into two sub-optimization tasks because the time-varying
magnitudes of RB resources and small-scale fading are on different scale. One more
issue is that the available BSs are assumed to be able to transmit the intended mes-
sage cooperatively, for achieving the macro-diversity gain, while the corresponding
overhead and procedure are not considered in the modelling. Last but not least, other
state-of-the-art DRL frameworks, e.g., Rainbow and SAC, may have potentials to

help realize comparable or even better learning performance.

The UAV path planning problem considered in Chapter 4 is solved within tabular
RL framework, which can only solve problem with finite state and action spaces.
Although Grover iteration from quantum mechanics is applied to help tabular RL
agent commit a better action selection performance, it does not change the inherent

RL training characteristic of maintaining a finite value table.

The DRL agent adopted in Chapter 5 is a DQN-related variant, which means that
the proposed DRL algorithm is inefficient for solving UAV navigation problem with
continuous action space. Moreover, explicit propulsion energy consumption model
is not specified in the considered UAV navigation task, which can be further polished
via adopting specific propulsion power cost model. Alternatively, this energy cost
issue is indirectly dealt with via posing a global constraint of mobility step threshold,
given the fact that propulsion energy consumption is mainly related to UAV’s flying

speed and the norm of UAV’s velocity is assumed as a constant.
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1.6 Outline of This Thesis

This thesis is organized as follows. Chapter 1 delivers the research background of this
thesis, where brief introductions to related technologies and the corresponding literature
reviews are covered. Then, this thesis’s technical contributions are distributed along with
Chapter 2 to Chapter.5, wrapping performance analysis, resource management and tra-
jectory optimization for UAV-mounted wireless networks. Specifically, Chapter 2 pro-
poses a UAV-relaying protocol for assisting wireless transmissions from the transmitter
to the receiver, for which analyses on transmission outage and covert communications
are performed. Chapter 3 studies outage duration minimization problem for downlink
cellular-connected UAV networks, in which a joint resource management design on time-
frequency resource block and beamforming is proposed to achieve the optimization goal
for arbitrary trajectory. Chapter 4 investigates path planning issue for uplink transmis-
sion scenario from ground nodes to UAV, where a QiRL approach is initiated to navigate
the UAV to find the optimal trajectory that can maximize the expected sum uplink trans-
mission rate. Chapter 5 coins a DRL algorithm enhanced by QiER technique to optimize
UAV’s trajectory in cellular-connected UAV networks for minimizing UAV’s weighted
sum of expected outage duration and time cost, in which directional antenna gain and
building-distribution-dependent A2G pathloss are considered. Chapter 6 concludes this

thesis, discusses extensions of current works and highlights future research directions.
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Chapter 2

Harvest-and-Opportunistically-Relay:
Analyses on Transmission Outage and

Covertness

2.1 Introduction

UAVs are widely known as energy-limited transceivers because on-board battery is the
only power supply that they can count on, which practically constrains UAV’s operational
duration for accomplishing their specific missions. To relieve this energy shortage issue,
SWIPT technique serves as a good candidate for prolonging UAV’s functional time. Be-
sides, compared to terrestrial relay, UAV-relaying technique is in general more likely to
realize better wireless relaying performance, due to wider coverage range, LoS-involved
A2G pathloss and on-demand deployment. However, current research on SWIPT FDR
mainly considers fixed working mode of the FD relay, which severely restricts the flexi-
bility and efficiency of wireless energy manipulation and information forwarding. Mean-
while, the majority of studies on SWIPT applies continuous EH assumptions without con-
sidering the impact of energy accumulation, which may lead to insufficient power support.

Additionally, covert communication problems have seldom been considered in the FD re-
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lay networks, potentially risking sensitive information leakage if the relay node is mali-
cious. Motivated by these observations, a novel SWIPT FDR protocol termed as harvest-
and-opportunistically-relay (HOR) is proposed for UAV-relaying networks, in which adap-
tive relay working mode, practical energy accumulation and discrete EH technique as well
as covert communications are considered, aiming at enhancing wireless energy manipulat-
ing efficiency and wireless transmission performance, while improving its privacy level.

The main contributions of this chapter are concluded in detail as follows.

e Hybrid Energy Storage and Markov Chain: To truly enable UAV-relay’s FD func-
tionality, a hybrid energy storage scheme is adopted. To track dynamic fluctuation
of residual energy, energy discretization and discrete-state MC are applied to model
the dynamic energy state transitions. All the transition probabilities are calculated

in closed-form, which facilitates the derivation of the MC’s stationary distribution.

o Covert Communication Analysis: Covert communication analysis under channel
uncertainty is conducted, while the optimality of radiometer for covert message
detection is proved. Closed-form expressions of false alarm and missed detection
probabilities are derived, based on which closed-form expressions of the optimal
detection threshold and the corresponding minimum detection error probability are
calculated. Numerical results show that the optimal detection threshold can help
achieve a better covert transmission detection performance, which enhances the pri-
vacy level of the proposed HOR protocol. Furthermore, the impact of imperfect

channel estimation on the minimum detection error probability is discussed.

o Transmission Performance Analysis: Invoking the MC’s stationary distribution,
closed-form expression of transmission outage probability is derived, then trans-
mission outage analysis of the proposed HOR scheme is provided. Furthermore,
the impacts of key system parameters on transmission outage performance are in-

vestigated via numerical results.
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Chapter organization: Section 2.2 presents the HOR model and its transmission strat-
egy. Section 2.3 describes the energy discretization, the MC and the stationary distribu-
tion. Section 2.4 shows covert communication analysis. Section 2.5 gives transmission
outage performance analysis. Simulation results are presented in Section 2.6 and chap-
ter summary is drawn in Section 2.7, while appendix containing proofs for mathematical

claims is stated in Section 2.8.

2.2 System Model and Transmission Strategy

\/ \/
k

hsp

\V/

Fig. 2.1 System model of the considered UAV-aided relaying network

As illustrated in Fig. 2.1, a UAV-aided wireless relaying network within dense urban
environment, consisting of one source (S), one destination (D) and one UAV-relay (R), is
considered.’ Energy-constrained R is equipped with two antennas so that it can adopt the
FD technique, whereas S and D are both single-antenna nodes. A novel HOR protocol is
proposed to assist wireless communications from S to D with the ability of managing RF

energy smartly, while improving the overall privacy level.

'Tt is worth extending the three-node model to multiple nodes scenario for gaining more comprehensive
insights, which is a subject of future research.
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2.2.1 Assumptions Regarding Wireless Channels

Note that all wireless channels are assumed to follow the quasi-static Rayleigh fading?
[108—112], and the block boundaries in wireless links are predefined to be synchronized
perfectly. Without loss of generality, the block duration in the considered scenario is nor-
malized to one time unit so that the measures of power and energy are identical and can
be used interchangeably. Wireless channels S—D, S—R, and R—D are denoted as hgp),
hggr, and hgp, respectively. Moreover, Agy indicates the SI link at R.3 All wireless chan-
nel coefficients follow independently and identically distributed (i.i.d.) complex Gaus-
sian distribution with zero means and variances E {|Agp|*} = Qqp, E {|hgg]*} = Qg
E {|hRD|2} = Qpp and E {|hRR|2} = Qpp. Specifically, elevation angle based proba-
bilistic LoS model [30, 31] is adopted to quantify the pathloss for A2G links, i.e., S=R
and R—D. The probability of A2G link being LoS is described by a logistic function of

elevation angle 6,,., given by

1
Pr; (0 )= , 2.1
STt L [Cexp(-B(OL, - O))]
where
H
ol =180 G- (ERY) (2.2)
ele T dl

Hp, indicates the altitude of R, d;, I € {SR,RD} denotes the length of A2G link and
coefficients B and C are the S-curve parameters depending on the considered environment,

e.g., rural, urban, dense urban or high-rise urban.

’The Rayleigh fading distribution that the self-interference (SI) channel at R follows is considered be-
cause the LoS component can be largely eliminated via antenna isolation and the scattering plays the prin-
cipal role herein. Besides, the concentrated dense urban case makes it less likely for the UAV to establish
LoS-dominated A2G links, thus the involved A2G channels are assumed to follow Rayleigh fading.

31t is worth noting that the channel coefficients hgp, Agg, hgp and hgg are manipulated to encompass the
gains of transmit and receive antennas as well as the pathlosses caused by propagation distances among the
nodes, for the sake of conciseness.
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Then, the expected A2G pathloss gain is applied to represent the variance of A2G

wireless channel coefficient, shown as
Q; = Pryo5(0%, ) Agd, ™ + [1 = Pr (0], K Agd, . (2.3)

where A denotes pathloss at reference distance of 1 meter, ¥ < 1 indicates the excessive
attenuation factor for NLoS transmissions®, and a; and a, are pathloss exponents for LoS
and NLoS propagations, respectively. Besides, the pathloss gains of link S—D is treated as

% while that of the SI link S—D is modelled

pure NLoS links, expressed as Qgp, = K Agdgp”s

as Qpgp = 1/(1 + dg{) because the dual antennas are relatively near to each other.

The instantaneous channel state information (CSI) of channel between S and D is as-
sumed to be available at S via channel estimation, but D can only gain the imperfect in-
stantaneous CSI estimation of the channel between R and D.> Note that the availability
of instantaneous S—R and R—R CSIs poses no influence on the considered performance

analyses so that no specific assumption on their availabilities is needed.

2.2.2 Relay Model

In the considered system, R is known publicly as an energy-limited device. To efficiently
solve power supply problem, different from conventional fixed-mode FDR scheme, a novel
FDR protocol termed as HOR is initiated, which allows R to work in either the pure EH
(PEH) mode or the FD SWIPT mode opportunistically. In specific, when performing
the FD SWIPT, R receives and forwards information simultaneously assisting wireless

transmissions between S and D, while the PS-based EH solution is applied to harvest the

“Note that the shadowing parameter « is assumed homogeneous for simplicity, which is following log-
normal distribution in practice.

>The instantaneous CSI of channel between S and D is gained via the minimum mean square error
(MMSE) channel estimation technique and feedback link. Specifically, D applies the MMSE method to
estimate channel S — D and then sends the estimated CSI to S via an ideal feedback link. Hereby, D
is assumed to estimate channel S — D with negligible estimation error. To make the HOR system more
practical and leave space to analyze the impact of imperfect channel estimation on covert communication
performance, only imperfect CSI of channel R — D is assumed to be accessible to D.
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RF energy. When adopting the PEH mode, R concentrates on absorbing wireless energy
without any information processing.

Alongside assisting signal transmissions, R may leak essential information (defined
as the covert message herein) regarding the source-emitted signals. The legitimate desti-
nation D also plays the role as a warden detecting the potential information leakage. To
reduce the probability of being detected by the legitimate party, R prefers to release its
covert message under solid covers. In the considered system, the forwarded version of
the source signals is the only existing cover. Reasonably, R would intend to broadcast the
covert message merely when itself works in the FD SWIPT mode. Otherwise, the covert
messages initiated by R will be detected by D with relatively high probability. This is
because, when the PEH is active, R is supposed to focus on EH without forwarding and
extra amount of transmit power will be detected easily by D.

To achieve the proposed HOR functionality, R should equip the following hardwares®:
1) three RF chains, enabling the EH, information forwarding and covert message emitting;
2) one rectifier utilized to transform RF signals into direct currents (DC); 3) a battery
serving as the principal energy carrier (PEC) with high energy capacity; 4) one minor
battery (MB) for storing harvested energy temporarily, e.g., a capacitor; and 5) another
battery exclusively for sending covert message, whose existence is unaware publicly.

Specifically, the receive antenna at R is permanently bounded with the rectifier via one
RF chain. One single battery cannot be charged and discharged simultaneously so that the
FD SWIPT mode may not be truly realised, while the hybrid energy storage method is
applied to resolve this dilemma. Note that the PEC is directly connected to the rectifier
and the broadcasting RF chain for absorbing and releasing energy, respectively. In the
PEH mode, the harvested energy is assimilated by the PEC directly. Otherwise, the PEC
releases its residual energy to empower the broadcasting RF chain. Meanwhile, the MB

stores the harvested energy temporarily and delivers all the stored energy into the PEC

®Please note that this chapter concentrates on performance analyses from the perspective of wireless
communications, while the UAV-relay is assumed to fly aloft, powered by possible propulsion solutions, e.g.,
electric propulsion systems with motors. Therefore, how extra payloads of adopted hardwares supporting
wireless transmissions affect UAV’s propulsion or hovering energy cost is beyond the scope of this chapter.
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once the FD SWIPT mode terminates. The hidden battery connected to the 3rd RF chain

will release its power only when R decides to leak.

2.2.3 Transmission Protocol

In the proposed HOR protocol, at the beginning of each transmission block, S broadcasts
pilot signal to estimate hgp,, which will be utilized to calculate the received instantaneous
signal-to-noise-ratio (SNR) at D, i.e., ygp = Ps |hSD|2 /0'12). Here, Pg represents transmit
power at S and 62D is the power of AWGN at D. In the case of ygp > 7,,, D feeds back
two bits “11” to S through a feedback link, where y,;, is a predefined instantaneous SNR
threshold. Otherwise, D feeds back two bits “00” instead. When S receives the feedback
bits “11”, S broadcasts two bits “01” to R. Otherwise, i.e., S receives “00” , S sends out
bits “10” alternatively. If R receives “01”, it means the direct link between S and D is good
enough so that R is not necessarily needed to assist the transmission and R keeps working
in the PEH mode without forwarding any information (of course, including the possible
covert message). If R receives bits “10”, which means the quality of received information
at D is poor, R is expected to help the transmission from S to D. Before participating in
transmission, R has to estimate its residual energy, to determine whether the available en-
ergy is sufficient to support the transmission. If the energy state of R is greater than a given
residual energy threshold E,;, i.e., E; > E,;;,, R feeds back bit “1” to S, otherwise, feeds
back bit “0” instead. Once S receives the feedback bit “1” from R, S starts to broadcast the
intended information signal, and R turns into the FD SWIPT mode, i.e., R helps S forward
the information signal and harvests energy simultaneously. If S receives the feedback bit
“0” from R, S broadcasts energy signal to charge the battery at R. At this moment, D ceases
signal processing because the energy signal is randomly generated by S and conveys no
useful information. The condition ygp, > y;, is referred to the “SNR requirement” which
is applied to guarantee the reliability of communication from S to D. On the other hand,
the condition E; > E,, is regarded as the “energy requirement”, ensuring that the residual

energy at R is sufficient to support the relaying work.
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The PEH Mode

Note that the PEH mode will be enabled in the case of either yqp > y,;, or {7’5D < y,h} N
{Ei < E,h}. By ignoring the negligible energy harvested from the noise at the receiver,

the total amount of energy harvested at R in a transmission slot can be given by

2 2.4)

Epgy = nPs |hgg

where 7 (0 < # < 1) indicates the efficiency of energy conversion, and the harvested en-

ergy in this stage will be straight transferred into the PEC.

The FD SWIPT Mode

It is worth noting that the FD SWIPT mode will be invoked when the case {ySD < y,h} N
{E,- > E,h} holds. Only in this circumstance, R gets chance to broadcast covert message
under the shield of the forwarded source signals.

When R does not leak, the received signals at R and D can be expressed as

YR [0] = \/Pshgpxs [0] + \/kPghgpxg [@] + ng [©] , (2.5)
¥p (@] = \/Pshspxs (0] + \/PrhrpXg [©] + np [0], (2.6)

respectively, where Py means transmit power at R, xq [w] ~ €/ (0, 1) represents the in-
tended signal emitted from S, @ € {1, 2, ..., n} denotes the symbol index in a transmission
block and n measures the block-length. Besides, xy [@] indicates the forwarded version
of xg [ — @] after decoding and recoding7, where xp [w] follows € (0, 1) and integer
0 represents the number of delayed symbols due to signal processing. The AWGNSs re-
ceived at R and D are marked as ni and np, with ng [w] ~ €N (O, aﬁ) and np [®w] ~
6N (0, 6]2)), respectively. Here, a practical assumption of imperfect SI cancellation (SIC)

is adopted, where the variable k € (0, 1] represents the SIC coefficient implying different

"Please note that information loss due to decoding and recoding is assumed to be negligible in this
chapter.
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SIC levels. Note that SIC technique, e.g., antenna isolation and analog/digital elimination,
is of importance for unleashing the promised potentials of FD-aided transmissions because
the presence of SI seriously constrains the received signal-to-interference-plus-noise-ratio
(SINR) of the FD transceiver [113, 114].

When R decides to leak, the received signals at R and D can be expressed as
Yr [a)] =V PshSRxs [(U] + V kPRhRRxR [a)] + V kPAhRRxC [a)] + ng [(U] , (27)

YD [a)] = \/FshSDxS [(U] + \/?RhRDxR [a)] + \/P—AhRDxC [a)] + np [(D] . (28)

respectively, where P, means transmit power of covert message x, with x, [w] ~ €4 (0, 1).
Note that P, merely comes from the hidden energy supply.

To enable the FD SWIPT mode, the PS-based EH protocol is adopted. Specifically, R
splits the power of received signal into p : (1 — p) proportions. The p portion of received
signal power is used to EH and the remaining (1 — p) portion is allocated to information
processing. Therefore, after ignoring the negligible energy harvested form the AWGN,
the energy harvested at R in each time slot can be calculated as Ergy = np(Pg |hSR|2 +
k Py |hRR|2) or Epg; = np(Ps |hSR|2 + kPy |hRR|2 + kP, |hRR|2), where the subscript
“FS0” refers to the FD SWIPT mode without sending covert message, another subscript
“FS1” means the FD SWIPT mode with covert message. Particularly, transmit powers at
R in the FD SWIPT mode are constrained as Prgy = Pg and Prg; = Py + Py, respectively.

Hence, the harvested energy can be reconstructed uniformly as
2 2
EFS =np (PS |hSR| + kPFS |hRR| ) , (29)

where PFS (S {PFSO’ PFSI} and EFS (S {EFSO’ EFS] }
For clarity, Fig. 2.2 delivers a simplified workflow of R, in the case of that the FD
SWIPT mode is activated.
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Fig. 2.2 Workflow of R in the FD SWIPT mode
2.3 Markov Chain and Stationary Distribution

The hybrid energy container makes R possible to absorb and release energy at the same
time. However, it also leads to highly complex and dynamic charge-discharge behaviours
at R, which poses solid obstacle for tracking energy state changes mathematically. To
tackle this problem, the MC-based method [68, 115] is invoked to track the complex energy

state transmission procedure.

2.3.1 Energy Discretization

To describe the dynamic charge-discharge behaviours of the PEC, the battery capacity
should be segmented into discrete energy states first [115]. Each energy state implies the
available energy remained in the PEC, which can be reached by calculating the product
of the corresponding number of energy levels and the unit energy level. In detail, the
PEC is quantized into L + 1 states, and the unit energy level is equal to Cp/L where Cp
represents the energy capacity of the PEC. Therefore, the i-th energy state is defined as
E, = iCp/L,i € {0,1,..., L}.8 Note that Cp > E,;, is considered, otherwise R gets no
opportunity to work in the FD SWIPT mode. In the PEH mode, the discretized amount of

energy absorbed by the PEC is derived as

A {EPEHJ S _ 2eenCp (2.10)

SPEH T\ CUL| T L

8In the case of infinite energy discretization, i.e., L — +o0, the proposed discrete battery model can
tightly track the behavior of continuous linear battery which is widely applied in the literature.
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where |-] denotes the floor function and gppy € {1,2,..., L}. Without loss of general-
ity, the i-th energy state represents the initial energy amount available in the PEC. After
energy-absorbing in the PEH mode, if E; + Zpgy > Cp, the PEC will be charged to the
maximal capacity E; = Cp and any overflowed energy has to be abandoned. Otherwise,

the latest energy state is denoted as E = E; + Zpgy, which is guaranteed to be fully

i+qpEH
accommodated by the PEC.

Because the MB is subject to a predefined energy capacity Cy;, the potential amount
of energy transferred into the PEC should be reasonably constrained by min {EFS, CM}
where the function min {x, y} outputs the smaller value. Practically, energy transfer from
the MB to the PEC suffers from circuitry attenuation. Thus, the actual amount of energy
absorbed by the PEC can be given by Egg = 1’ X min { Egg, Cy; }, where " denotes the

circuitry attenuation coefficient. Furthermore, the discretized amount of energy absorbed

by the PEC should be expressed as

Eps | G C

S Al Eps [ Cp _ 9Fs P @.11)
Co/L| L L

where ggg € {1,2,..., L}. Invoking the energy requirement, the consumed energy for

forwarding information should locate at ESS € [E,h, Ei] , where Elgs =P = E;, =dCp

is predefined for simplicity and @ € [0, 1] stands. After discretization, the amount of

energy consumption at the PEC can be given by

C C
—c _ | Frs | Cp _ sCr 2.12)
TES G/l | L L’ '

where [-] stands as the ceiling function, and qlgs is defined for notation simplicity. Simi-

larly, if E; — EISS + Zgg > Cy, the PEC will be fully charged to E; = Cp. On the contrary,

. . _ _ =C =
the latest energy state after charging is E;_ oSotaps = E; — =55 + Zps-
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2.3.2 Markov Chain

Following the energy discretization, the transition procedure of energy states at the PEC
among multiple transmission blocks can be traced as a finite-state time-homogeneous MC.
The transition probability p; ; denotes the probability of energy state transition from E;
to E;, which occurs between the beginning of a transmission block and that of the next
transmission block. The energy state transitions can be stated comprehensively in the
following six cases.

1) From E to E,: In this case, R cannot afford the FD SWIPT mode. After a trans-
mission block, the residual energy yet remains empty. It indicates that the total harvested
energy in this PEH block is discretized to zero, namely, Zppy = 0. Invoking (2.4) and
(2.10), the transition probability of E, — E; can be given by p,, = Pr (qPEH = 0) =
Pr[|hSR|2 < CP/(nPSL)]. Since |hSR|2 follows the Exponential distribution with mean

Qqg, the cumulative distribution function (CDF) of |hSR|2 is given by F| hs

2 x)=1-
exp (—x/QSR). Furthermore, p o = F, ha? [CP/(V]PSL)] can be derived.

2) From E; to E; : In this case, whether R works in the PEH mode or the FD SWIPT
mode depends merely on the SNR requirement. If the PEH mode is invoked, the har-
vested energy can be any possible value, since the PEC cannot absorb additional energy.
If the FD SWIPT mode is activated, the consumed energy should be less than or equal
to its harvested counterpart. From (2.9), (2.11) and (2.12), the transition probability of
E;, — E; can be shown as p; ; = Pr (ySD > yth) + Pr (ySD < yth) Pr (EFCS < EFS) .
Similar to Case 1), gsp = Pr(rsp < 7) = o (087:n/Ps) and Pr (ygp > 7)) =

1 - Flool? (637/Ps) = 1 — qgp can be derived. Regarding Pr (=

s < Zgs). it can be

calculated as

Pr<E > CC) Cy > B
'C FS < — ’ MZ 7
Pr [<qc <7 M>ﬂ(EFsZCM)l = " Th @13

C
qFSCP
O, CM < _71/L
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Invoking (2.9), Pr [Egg > q5,Cp/(n' L)| = Pr [Z > g5 Cp/(npn’ L)| can be obtained,
where Z = P, |hSR|2 + k Pgg |hRR|2. Via convolution of two Exponential distribution

variables, the CDF of Z can be given by

( X

PsQgr

] — —IS™SR , PQsR 4
PsQggr —k PrsQRRr
F, (x) = { __kPrsQgr ~ KPR ORR , 2.14
Z( ) PSQSR_kPFSQRRe > PSQSR # kPFSQRR ( )
1 b'd
57 (2’ PsQSR> ; PsQgr = kPrgQpp

where y (-, -) is the lower incomplete Gamma function. Then, Pr [EFS > ngCP/(n’L)] =

1-F, [qgsCP/(npn’ L)] can be derived. Finally, it is gained that

C C
qFSCP qFSCP
— > JEs P
I —qspFz <,1p,7,L> - Cnz

C
- s Cp
1= gsp. Cym <7

3) From E; to E ) (0 <i < j < L): If the initial energy state cannot satisfy the energy
requirement, i.e., E; < E,;, the PEH mode will be selected. Otherwise, when ygp > 7,
R will choose the PEH mode. On the contrary, R will work in the FD SWIPT mode. Thus,

the transition probability of E; — E; can be expressed as

pi; =aspPr(E; < E) Pr(gpgy = j — i) + qsp Pr (E; 2 Ey) Pr(qps — a5 =j — i) +

.

(1—dasp) Pr(gpen = Jj =) = (1 = gsp) Pr (gpu = j — i) + , (2.16)
LqSDPr(‘IFs—ng=J'—l'), 2@

where ¢ = [E,,L/Cp]| denotes the total number of energy units needed to represent

the energy requirement in the discretized energy regime. Next, Pr (qPEH =j—i ) and
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Pr (gps — qS = j — i) are given by

G-i+DCp (j—D)Cp
—ji—i At ) I At & 2.1
Pr(gpen = i) = |hSR| [ nPsL FthR|2 nPsL |’ (.17)
( (J=i+45s) Cp
O, CM < n'L
(j—itgrg+1)C
Iz l np;S’L -l -
Pr(q —qC =j—i)=< (2.18)
FS ™ 4Fs (j—i+agg)Cp c (j—i+afg+1)Cp ’
Z1 e’ |7 M= n'L
_ (j—i+dg)Cp .
L1 F l—nﬂﬂ’ T ,  otherwise

respectively.

Combining (2.16), (2.17) and (2.18), probability of transition E; — E f is stated as

(j—i+1)Cp ) <(;—i)cp > .
F, ~ P ) F , <
|nse|* < nPsL |nse)” \ “nPsL =9

U ) - U=ilC )| - (=it G
|]’lSR|2 < nPgL > ﬂhSR|2 < nPsL >_ 5 i > (p&&CM < 7L

(i—i+1)Cp ) ((i—i)Cp >
F ~ TP F
|sg |’ < nPsL |nsg|” \"nPsL )|

pij = e ll_FZ<(j_;:+SL)Q)>]’ I-Z(o&&(j_i;’,#LS)Q’SCM<(j_"+§—SLH)CP
(1-gsp) X
[F|hSR|2 (%) B F|"SR|2 <U”;S)ip>]
+4spX

(2.19)
4) From E; to E; (0 <i < L): If E; < E,;,, the PEH mode will be invoked and the
harvested energy should be discretized as zero. If E; > E,;, and ygp > 7;,, the PEH mode

is enabled and the harvested energy should also be discretized as zero. If E; > E,; and
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Ysp < 7, the FD SWIPT mode will be selected, the discretized amount of consumed
energy should be equal to that of harvested energy. Hence, the transition probability of

E; — E,; is calculated as

pii = (1—qsp) Pr(gpey = 0) + gsp Pr (E; < E;,) X

Pr (gpgn = 0) + qsp Pr (E; > E,;,) Pr (qps — qg = 0)

-

=1 (1—4gsp) Pr(gpgy = 0) + ’ (2.20)

qsp Pr(ges — a5 =0). i> o

where

e

g5 Cp
0, Cy < ZS,L
C rs+1)C s C ¢S+1)G
Pelos = =0) = 12 [ 5 - 2 (7). ez B e
_ desCp .
1 -FZ <17,m1’ L> , otherwise

Finally, the transition probability of E; — E; can be expressed as

F|hSR|2 (%) i<g
(1= as0) Py (5557 ) 2 gty < BT
Pii =1 (1= aso) F|hSR|2 <'71C’§L> +C C C
dsp [1 —Fz <ZF;1—,C;>] ; i> (p&&q}:ﬁ—CLP <Cy< —(qpf;;)q’

Cp
(1= asp) Flhga ('IPSL> +

dsp lFZ <—(qFS+1)CP> - Fy <—qFSCP )l » 12 &&Cy 2 _(qFS,;i)CP

npn’ L npn’ L
(2.22)
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5) From E; to E; (0 < j <i < L): Obviously, this circumstance can only occur in the

FD SWIPT mode. Therefore, the transition probability of E; — E; can be derived as

pij=Pr(rsp < 7n) Pr(E; = Eyp) Pr(qpg — aps =i = J)
07 i< 0]
= . (2.23)
qSDPr<q1(::S_QFS=i_j)’ 2@

Next, Pr (qgs —qps =1 — j) needs to be calculated, shown as

|a55-G-p|c

0, CM < n'L

F, ( [q}?s—(i—j)ﬂ](?p) ~

npn’ L

C _ — i) —
Pr(dps —dps =i=J) = FZ([qgs—(i—j)]cP P |aSs—t=p+1]ce - (2.24)

npn’ L - n'L

C L.
Grs == |G
1-F, <M> , otherwise.

npn’ L

Invoking (2.23) and (2.24), the transition probability of E; — E; can be expressed as

-

c . .
. . qu_(’_f) CP
0, i<@ll|JZe&&Cy < %)

|aSs—G-D]ce

npn’ L

Dii =3
i.j . [qlgs—(i—j)+l]cp ~
qsp Z non' L

F, ( [qgs—(i—j)] Cp)] 0> p&&Cy > [qgs—(i—j)ﬂ]cp

|aSs—G-D]ce <cn < |a-t-n+1]ce

asp | 1—Fz 12 p&&— =M n'L

npn' L n'L
(2.25)
6) From E; to E; (0 <i < L): When E; < E,;, the PEH mode will be activated, and
the harvested energy should meet Zpgpy > E; — E;. Otherwise, if ygp > 7,;,, the PEH is
invoked and the harvested energy is supposed to satisfy Zppy > E; — E;. If E; > E,,

and ygp < 7;y,, the FD SWIPT mode will be selected and =Zpgy — ESEH > E; — E; should
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hold. Thus, the transition probability of E; — E; can be expressed as

Pir =Pr(ysp = 7n) Pr(gpgn = L — i) + Pr (ysp < 7,) X
Pr(E; < E;,) Pr(gpgy = L —i) +Pr (ysp < vi) X

Pr(E; > E,;) Pr(qps —qpg > L — i)

Pr(qPEHZL—i), i<

=9(1 = qsp) Pr(gpp > L — i) + . (2.26)

aspPr(gps —apg = L—i), i@

Next, Pr (qPEH >L—i ) and Pr (qFS - qgs >L—i ) can be derived as

Prgppy = L—i)=1—-F, p (L-DC] (2.27)
- |sr| nPsL
L-i+¢S.)C
O’ CM < #
C A
Pr(gps — gpg > L — i) = (L—i+q§5)cp (L—z+qgs>c ., (2.28)
I-Fz npn’ L > Cmz n'L

respectively.

Invoking (2.26), (2.27) and (2.28), the transition probability of E; — E; is given by

-

1 F <(L—i)Cp> ’ .
|hSR|2 nPsL t<e < . )
IR P (t-rais)cr
B (1 qSD) _1 F|hSR|2< nPsL )] ’ P2 p&&ly < n'L 599
pi’L_<(1— V[1-F, o (%) + =
4sp | |hsk nPsL
L—t+ql§S Cp L—i+fllgs Cp
dsp I- FZ ( non' L ] s 1 > (p&&CM > < n' L )

2.3.3 Stationary Distribution

Theorem 2.1. In this theorem, the probability that the energy status of arbitrary transmis-

sion slot meets the given energy condition will be derived, from a long-term perspective.



2.3. Markov Chain and Stationary Distribution | 56

Po,0 P11

Py P12

Po2 P21

P22

Fig. 2.3 The state transition diagram in the case of L = 2

With the help of stationary distribution &, for arbitrary transmission slot, Pr (E,- > Eth) =

ZiL:q) & holds where @ can be foundin (2.16)and &, € & = (50,51, ...,fL)T is defined in the

L

following proof. Furthermore, Pr (El- < Eth) =1- Zi:(p

1 .
& = Y7, & can be obtained.

Proof. Denote M 2 {p:;} asthe (L + 1) x (L + 1) state transition matrix, of which the
state transition diagram in the case of L = 2 is depicted in Fig. 2.3 as an example, while

the corresponding transition probability matrix can be expressed as

Poo Po1 Pop
M= pl,O pl,l p1,2 . (230)

Pro P21 P2p

Using the similar methods in [68] and [116], it is easy to verify that the transition ma-

trix M is irreducible’ and row stochastic!?. Thus, the stationary distribution & must

In a MC, the transition matrix is said to be irreducible if it is possible to reach any other state from
any state in finite number of steps. In the MC analysis, all possible energy states communicate so that the
transition matrix M is irreducible.

10T 3 MC, the transition matrix is said to be row stochastic if the sum of all the elements in a row is one
and all elements are non-negative. In the MC analysis, the transition probabilities from any energy state to
all possible energy states sums up to one and the transition probabilities are definitely non-negative, thus
the transition matrix M is row stochastic. Note that M is asymmetric because Pi; #*p i Vi, j, given the
aforementioned analysis.
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satisfy & = (‘fo’ & ...,fL)T = MT¢&. Solving the above equation, & can be derived as

g=(M" —1+B)” bwhereB,; = 1,Vi,j,b=(1,1,... )" and Tis the unit matrix. M

Remark 2.1. In Theorem 2.1, &; where i € {0, 1, ..., L} represents the stationary prob-
ability of the i-th energy state, on a long-term viewpoint. The reason why the result
Pr(E; > E,;) = ZiL:(p & in Theorem 2.1 holds can be straight explained as follows: &;
(i > @) describes the probability of an arbitrary event whose residual energy is higher
than the energy threshold and the probability summation of all these events makes up the

overall probability of E; > E,,.

2.3.4 Verification and Discussion

In Fig. 2.4, the dynamic charge-discharge behaviour of the PEC and the comparison of
steady state distribution gained from the analytical framework in this section against those
generated through Monte Carlo simulation are demonstrated, for various PEC levels L.
Besides, Fig. 2.5 depicts the impact of PEC levels L on the probability of energy require-
ment being satisfied or violated. The detailed system parameter setups in these figures are

in line with those in Section 2.6.

Remark 2.2. The initial energy remained in the PEC is set to be empty, and as the proposed
HOR system runs with respect to (w.r.t.) block numbers, the complex energy accumulation
and consumption process can be clearly traced as shown in the upper subfigures of Fig. 2.4
over different values of L. Observing the corresponding lower subfigures, it is confirmed
that the proposed analytical model matches the actual distribution tightly, validating the

effectiveness of analysis on the MC in this section.

Remark 2.3. From Fig. 2.5, one can find that the larger L (i.e., the PEC levels) is, the
more likely residual energy in the PEC can satisfy the energy requirement which is hereby
quantified as that the residual energy in the PEC is greater than or equal to dCp. This is
reasonable for a two-fold reason: 1) the floor function (e.g., formulas (2.10) and (2.11))
used to quantify the discretized amount of energy absorbed by the PEC limits that the pro-

posed energy discretization model has to abandon the overflow energy assimilated; and 2)
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Fig. 2.5 The impact of energy discretization levels

the ceiling function (e.g., formula (2.12)) applied to quantify the discretized amount of en-
ergy consumed by the PEC restricts that the proposed energy discretization model should
quantify the underflow amount of discretized energy used up by the PEC as a specific inte-
ger, which means the proposed model consumes extra energy than its actual counterpart.
According to the aforementioned analysis, it is straightforward to conclude that the larger
L is, i.e., the finer the PEC is mathematically discretized, the more efficient manipula-
tion of RF energy can be realized. A subsequent influence of L on wireless transmission
performance can be found in detail in Section 2.6. However, there exists the inherent
trade-off between the computation complexity and energy manipulating efficiency of the
proposed energy discretization model so that the value of L should be chosen carefully

and delicately in the practical application scenarios.

2.4 Covert Communication Performance Analysis

Note that R only intends to broadcast covert message when the FD SWIPT mode is active.

Thus, this chapter focuses on the circumstance where D performs detection only in the
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case of FD SWIPT mode. In the PEH mode, R will not broadcast covert message and
D ceases the detection. This consideration is reasonable because the exact work mode R
applies is an open consensus among all nodes at the beginning of each transmission block.

Note that in this section, constraint yspy < ¥, holds due to the nature of FD SWIPT mode.

2.4.1 Channel Uncertainty Model

To investigate the impact of channel uncertainty on covert detection performance at D,
it is assumed that D gets an imperfect estimation of the wireless channel R—D and the
imperfect channel estimation model of D is formulated as hzp, = hgp + Agp. Where
hgp ~ €N (0,(1 — ) Qgp) and g, ~ EA (0, fQpp, ) are independent complex Gaus-
sian random variables (RVs) representing D’s channel estimation and the corresponding
estimation error, respectively [117]. It is worth noting that § € (0, 1) measures the degree
of channel uncertainty and the aforementioned Gaussian estimation error comes from the

MMSE estimation method.

2.4.2 Binary Detection at the Destination

Apart from receiving desired information from S and R, D also needs to perform simple
(binary) hypothesis test in which 7|, means the null hypothesis indicating that R does not
transmit covert information, while #’| represents the alternative hypothesis implicating
that R does emit the covert message. In a specific transmission slot, the False Alarm (i.e.,
type I error) probability is defined as Pp, = Pr(2,|%,) and the Missed Detection (i.e.,
type II error) probability is given by Pyp = Pr (90|% 1), where 9 and 9, represent
the binary decisions in favor of the occurrence of covert transmission or not, respectively.
Besides, a priori probabilities of hypotheses #|, and #'| are assumed to be equal (i.e., both

are 0.5)!!, which is a widely adopted assumption in the field of covert communications.

"Note that the equal a priori probability assumption corresponds to the circumstance in which D has
no a priori knowledge on whether R emits covert message or not and completely ignores the probability of
covert transmissions at R.
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Following this assumption, the detection performance of D is measured by the detection
error probability Pg £ Pga + Pyp [46].

For arbitrary € > 0, R is considered to achieve covert communication if any transmis-
sion scheme exists satisfying Pg > 1 — €. Note that the lower bound on Py characterizes
the necessary trade-off between the false alarms and missed detections in a simple hy-
pothesis test. Specifically, P > 1 — € represents the covert communication constraint
and e signifies the covert requirement because a sufficiently small € renders any detector

employed at D to be ineffective.

2.4.3 Derivation and Analysis

In the case of FD SWIPT mode, the received signals at D in the w-th channel use within

a transmission block can be expressed as

V Pshspxs [w] + 1/ PrhrpXg [@] + np [@], 4

\/PShSDxS [CO] + \/PR]’ZRDXR [CO] + \/PAhRDxC [C()] + np [(D] , %1

¥p (@] . (231

Lemma 2.1. In the case of availability of noise power at D, it is validated that radiometer

is the optimal detector for covert communication detection.

Proof. See Appendix 2.8.1. [ |

Theorem 2.2. For arbitrary detection threshold t of the radiometer, closed-form expres-

sions of false alarm and missed detection probabilities can be given by

jO—T .
exp < ) s, T2 Jo
Ppy = A0 : (2.32)

1, otherwise

1—exp[h—_f], T 2>
Pup = PPt Pa) : (2.33)

0, otherwise
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respectively, where j, = PsthD|2+PR|i1RD|2+6é and j; :PS|hSD|2+(PR + PA) |ilRD|2+

(712). Furthermore, invoking (2.32) and (2.33), the closed-form expression of Pg can be
derived as
rl, 7 <Jo
PE:<€"P<,}2—;@>’ Jo<T<ji- (2.34)
e (Gt ) — o e 720
Proof. See Appendix 2.8.2. |

Theorem 2.3. The optimal detection threshold of D’s radiometer, which is supposed to

minimize Pg, is given by

J1s J1 2 Ti=0
5 = = (2.35)
Tk1=05 Jl < Tk1=0
where
PPy (P + Ps) Qrp Py
o=~— 1 + Pglhop|? + 62, 2.36
Proof. See Appendix 2.8.3. |

Corollary 2.1. To achieve the best detection performance, D will always select the optimal
detection threshold as per (2.35). Thus, closed-form expression of minimum detection

error probability can be calculated as

Jo—J1 .
exp < ) ’ J1 2 Ty, =0
Pt = BPrQp = (2.37)

Jo~ k=0 _ J1= Tk =0 .
I+exp ( PPrQgp > °xp [ﬂ(PR+PA)QRD] > 1S Thy=0
Remark 2.4. According to Theorem 2.2, Theorem 2.3 and Corollary 2.1, it is confirmed
that Py, v and P are independent to parameters k, L, vy, Cpp, 1, 1, 0%, hyg and hg.

This is because, concisely speaking, covert communication is constrained to be possible

only within the FD SWIPT mode, and parameters Cp and E,;, can affect covert metrics
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Fig. 2.6 Validation of the derived closed-form expressions of detection error probability
and the optimal detection threshold, and illustration of performance superiority of the
proposed minimum detection error probability and its monotonicity w.r.t. f
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in the manner of the predefined Py = E,;, = dCp. Moreover, Py is not subject to Pg
and hgy, either, because of the subtractions jo — ji, jo — Ti1=0 and j; — Ty1=¢- This find-
ing guides designers to understand what parameters are valid to pose impacts on covert

communication detection performance.
Corollary 2.2. Minimum detection error probability PZ monotonically increases w.r.t. p.
Proof. See Appendix 2.8.4. |

Remark 2.5. Based on Corollary 2.2, the imperfect channel estimation is proved to be an
important factor posing significant impacts on Py. Smaller p, i.e., more accurate channel

estimation, is desired to enhance the covert communication detection performance at D.

To show the covert communication performance analysis and verify the correctness of
the corresponding analytical expressions, Fig. 2.6 is illustrated, in which g = 0.5 holds
unless otherwise specified and other system parameters are set in line with those in Section
2.6. In Fig. 2.6, covert metrics for arbitrarily selected block are evaluated, where hgp, =
2.5652x107*—4.4098x 10~} and hgp = —0.0003—0.0016, hold. From subfigure (I), the
Monte Carlo simulation nodes match perfectly with the analytical curve of (2.34) and the
dash line generated from (2.35) coincides tightly with the simulated optimal z’s coordinate,
validating the correctness of Theorem 2.2 and Theorem 2.3. Subfigure (II) depicts that
applying Corollary 2.1 can significantly reduce the detection error probability, compared
to its counterpart without the optimal detection threshold. It can also be observed from
subfigure (II) that the curve of IPE keeps a constant w.r.t. Py, the reason of which can be
found in Remark 2.4. Finally, subfigure (IIT) shows that P;; monotonically increases w.r.t.

p, justifying the effectiveness of Corollary 2.2 and Remark 2.5.

2.5 Transmission Outage Performance Analysis

In this section, transmission outage probability (TOP) is derived and analysed, the cir-
cumstance in which D applies maximum ratio combination (MRC) protocol to combine

the received signals from S and R is considered, when the FD SWIPT mode is on.
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In FD SWIPT mode, invoking (2.6) and (2.8), the received SINR at D can be given by

Ysp+ Y, #o

Yp = : (2.38)
Yspt+ Yy, #
where
1 — p) Pe|hep|? Pyl hop|?
Yy, = min (1= p) Bl S‘;' - Rl 5‘3' , (2.39)
(1_p)kPR|hRR| +O'R GD
v oo Pglhgpl? (1= p) Ps|hggl? (2.40)
= B2+ 62 (1= p)k (Po+ Py lhenl? + 62 | '
Pylhgp|? + 05 (1= p)k (Pg + Py) |hggl® + og

Note that the term min {-, -} in (2.39) and (2.40) is introduced by the fixed decode-and-

forward (DF) relaying policy applied at R [118, 119].

Lemma 2.2. The closed-form CDF expressions of Yo, and Yg, can be calculated as

- r 2 2
°R °D
| PsQgpexp|- < = Psose T Prorn >x] 0
- PSQSR+kPRQRRx ) ’ ¢ -
I 2
°R °D
FY%¢ (X) = 3 | PgQgp exp __ (1—p)PSQSR+(PR—PAx)QRD>x] — 1&&x < Pp (241)
- PSQSR+k(PR+PA)QRRx ’ ¢ - X P_A
P,
1, ¢ =1&&x > £
L PA
Proof. See Appendix 2.8.5. [

Lemma 2.3. The closed-form expression of CDF of yp|#, can be derived as

Fy96, () = qsp — v [Ei <U3) —Ei (U4)] X
PsQ i % %D (P Qe+ kPO
SPESR\ (1-p) PQgg + PeQrp | PQgp ( sSdgr + KR RRX) s
P kPO > (242)

where Ei(-) represents the one-argument Exponential integral function. For concise ex-

pression, the following variables in (2.42) are denoted as v, = G%QSR/(kPRQRRQSD),
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2 2 2

o o o
vy = ( Pssfm - (1_p)11§SQSR - PRé)RD)/(kPRQRR), vy = Uy (PsQgg + kPrQppx) and vy =

vy [PsQgg + k PpQpgg (X = 1] -

Proof. See Appendix 2.8.6. |

Lemma 2.4. The closed-form CDF expression of yp|# in the case of FD SWIPT mode

can be derived approximately as

F, 17, (X) = quadgk (fun (y),0,7,,) , (2.43)

where the definitions of quadgk(-, -, -) and fun (y) can be found in the following proof.
Proof. See Appendix 2.8.7. [ |

Remark 2.6. In Lemma 2.4, the approximation of F, 4, is achieved by converting infinite
integral to finite summation. The accuracy of this approximation is mainly affected by the
amount of nodes used within the finite summation, the more nodes is applied, the more

complex the summation is, though more precise approximation it can achieve.

Theorem 2.4. The closed-form expression of the TOP in the FD SWIPT mode is given by

L
I
TOPrs =3 ¥ & | Fypi, (280 = 1) + Fyppar, (250 1)) (2.44)
i=@

Proof. See Appendix 2.8.8. |
Theorem 2.5. The closed-form expression of the TOP in the PEH mode is derived as

p—1

TOPgy = dsp ) &+ Fyrspon, (250 = 1), (2.45)
i=0

where the concept of F, (x) can be found in the following proof.

spl7sp=Yin

Proof. See Appendix 2.8.9. |
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Corollary 2.3. Finally, invoking (2.44) and (2.45), the closed-form expression of overall
TOP for the proposed HOR model can be calculated as

@—1
TOP =qsp Z §i+F}’SD|7SDZVth (2Rth - 1) +
i=0
L
1
5> 2.6 [le%o (250 = 1) + Fy g7, (250 — 1)] - (249
i=@

2.6 Numerical Results

In this section, applying the analytical expressions derived in the previous contents, nu-
merical results are simulated and the impacts of key parameters on the TOP performance
are investigated. Note that, in Section 2.4, the effectiveness of derived covert communica-
tion analysis for arbitrary transmission block in the FD SWIPT mode has been showcased.
It is fair to say that the proposed HOR system can always achieve minimum detection error
probability for any possible FD SWIPT transmission block, via proactively applying The-
orem 2.3 and Corollary 2.1. For conciseness, covert communication performance will not
be depicted in this section. Without loss of generality and for simplicity, the simulation
layout of involved transceivers is distributed in a vertically cut plane of 3D airspace as
illustrated in Fig. 2.7, where R can only move within the focused plane. Unless otherwise

specified, the simulation results are based on parameter setups listed in Table 2.1.

drr

Fig. 2.7 The layout of involved nodes for conducting simulation



Table 2.1 Parameter setups for simulation

Parameters | Values | Parameters | Values
UAV’s altitude Hy 20 m Distance of S—D dgp 100 m
Distance of R—R drp 0.1m Distance of S—R dgg 20\/5 m
Distance of R—D dpp V202 + 802 m Reference pathloss 4 -5 dB
Excessive attenuation factor x -2 dB LoS pathloss exponent a; 2.1

NLoS pathloss exponent a,
Target transmission rate R,
Energy threshold E;,

PS factor p

PEC’s capacity Cp

Energy conversion efficiency 7
Transmit power of R Py
S-curve parameter B

SIC coefficient k

3

1 bps/Hz
dCp = 0.6Cp
0.5

1072 Joule
0.9

Eyp

0.1

0.5

AWGN variances oﬁ/alz)
SNR threshold y,,
Transmit power of S Py
Covert transmit power Py
MB’s capacity Cy;

Circuitry attenuation coefficient 5’

A prior probability of 7,
S-curve parameter C
PEC level L

-70 dBm/-70 dBm
1

10 dBm

0.2P

10™* Joule

0.9

0.5

15

15

97

69 | SINSY [eoLISWNN]
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Fig. 2.8 Transmission outage probability versus Pg with various L

2.6.1 Validation of The Proposed Energy Discretization Method

In this part, the feasibility and accuracy of the proposed discrete energy model described
in Section 2.3 will be validated, by plotting curves generated from the MC-based TOP
analysis and the corresponding Monte Carlo simulation points. Note that L — oo serves
as lower bound of the TOP performance, in the case of a massive energy discretization.
For comparison, the conventional relay curve depicts the performance of the most popular
FDR scheme in which fixed FD SWIPT relaying mode is applied without energy accu-
mulation. It can be observed from Fig. 2.8 that even a small energy discretization level
(L = 5) is enough to provide considerable TOP performance gain for majority of the
simulated Py regime, compared to the circumstances in which no relay assists wireless

communications or the conventional relay is utilised. Comparing the TOP performance
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curves of various L values, one can conclude that the TOP performance approaches the
lower bound gradually as the value of L increases. The reason why L can affect the HOR
system has been explained in detail in Remark 2.3. Specifically, when L’s value is not
significant, i.e., L = 15, the TOP performance curve can coincide with the lower bound in
the most region of simulated Py. The aforementioned observations validate the efficiency
and effectiveness of the proposed HOR system on reducing wireless transmission outage,
even with practical energy discretization levels (L = 5, L = 10, L = 15). Another obser-
vation is that increasing transmit power, i.e., Pg, can help all the considered FDR methods

commit a better TOP performance.

2.6.2 The Impact of R’s Transmit Power

In this part, the impact of P; on TOP performance will be discussed. Fig. 2.9 depicts TOP
curves versus Py with various values of k. Itis straightforward to observe that TOP curves
first decrease and then increase with the increasing of Py, which turns out that the optimal
value of Py exists. The existence of the optimal Py is due to the following two reasons: 1)
a larger Py will consume more stored energy at the PEC but also lead the PEC to absorb
more energy from the SI channel; and 2) the min function introduced by the DF relaying
strategy limits that yp, is not always increasing with the increase of Py. These two kinds
of dilemma cause that simply enlarging Py does not lead to a better TOP performance,
and also make the optimal value of Py existing. This finding is beneficial for designer to

choose a feasible value of P, when implementing the proposed HOR system.

2.6.3 The Impact of Capacity of The PEC

In this subsection, how Cp influences the TOP performance will be examined. Fig. 2.10
shows TOP curves versus Cp with various L values. It is straightforward to find that for
specific HOR system parameter setup, there exists optimal value of Cp to minimize the
TOP performance. The existence of the optimal Cp is because, briefly speaking, it influ-

ences the values of P; and E,, by the means of Py = E,, = dCp. Under the system
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Fig. 2.9 Transmission outage probability versus Py with various k

parameter setup of this example, as L increases, the optimal Cp increases as well, though
the optimal Cp almost remains unchanged in the range of L € [10, o0). It can be observed
that L = 50 can almost act as a feasible alternative of the TOP performance’s lower bound,
revealing the efficiency of the proposed energy discretization model. The observation of
this example allows system designer to determine an optimal Cp while reducing computa-

tion complexity by selecting a small but sufficient L, for various system parameter setups.

2.6.4 The Impact of The PS Factor

In this part, the impact of p on the TOP performance will be investigated. Fig. 2.11 demon-
strates TOP curves versus p with various L values. Alongside all the possible values of
p towards p = 1, one can find that the TOP curves first decreases, reach the optimality

and then rocket to the worst case at which performance gain offered by the proposed HOR
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protocol evaporates. The existence of the optimality is because the inherent trade-off at R
between harvesting more energy and gaining stronger received SNR. Besides, one can find
that the energy discretization levels does pose impact on the value of optimality. Specif-
ically, a larger L leads to a smaller value of the optimality. It does make sense because a
larger L can reduce the energy loss in the proposed energy discretization model based on
the discussion in Remark 2.3 so that R has the space to pour more efforts on information

processing.

2.6.5 The Impact of R’s AWGN Power

In this subsection, the influence of 012{ on the TOP performance will be investigated. Fig.

2.12 depicts TOP curves versus UIZ{ with various values of p. From the figure, it is straight-

forward to conclude that the TOP performance gets worse with the increase of 6}%. Specif-
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ically, when R is less or equally “noisy” than D, i.e., in the range of 01% < 012) = —70 dBm,
the TOP performance remains static at the minimum values. On the contrary, a “noisier”
R will lead to the loss of performance gain offered by the proposed HOR system. This
is because, in short, the min function introduced by the DF relaying strategy in formulas
(2.39) and (2.40) forces the overall received SNR yp, to behave the segmentation feature.
Besides, with the increase of GI%, the impact of p on the TOP performance gradually be-
comes negligible, e.g., in the case of GIZ{ € [—10, 30] dBm. This is because, at this moment,
Y?f,-’ i € {0, 1} is way too small compared to ygr,. Moreover, the detailed illustration in the
case of 612{ = —70 dBm is given. At this point, the TOP performance of p = 0.9917 (the
empirical optimal PS factor from Fig. 2.11) is superior to that of p = 0.996, validating the

existence of the optimal p discussed in the aforementioned Subsection 2.6.4.
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2.6.6 The Impact of SIC Strength

In this part, how k affects the TOP performance will be examined. Fig. 2.13 shows TOP
curves versus k with various Pg values. It is obvious that the TOP performance is be-
coming worse with the increase of k, for all simulated Pg setups, since a larger k means a
stronger SI which suppresses the received SNR of R more. Although a larger k can lead R
to harvest more energy from the loop SI channel, from Fig. 2.13, it is still better to pursue
a good SIC efficiency, i.e., a smaller value of k, when implementing the proposed HOR
system. Besides, with a higher Py, the impact of k becomes less obvious. This is because
the strengths of both energy harvested from the SI channel and the interference caused
by the SI link become minor, in the case of a high value of Py, which is determined by

formulas (2.9), (2.39) and (2.40).
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2.6.7 The Impact of The Distance Between S and R

In this subsection, the impact of dgg on the TOP performance will be discussed. Subject

to the Triangle Side Length Rule, the possible length of dgi should locates in dqg €

[20, 202 + 1002] m. From Fig. 2.14, it is easy to find that no matter what L’s value

is, a reasonable shorter distance between S and R is always preferred for achieving more

TOP performance gain. As R moves away from S, not only dgr increases but also the

probability of link S—R being LoS becomes less likely as per the adopted A2G pathloss

model (2.3), which thus results in that the amount of harvested energy drops accordingly

as per (2.4) and (2.9). From this figure, the approaching speed of TOP curves to “No

Relay” line is slower for a larger L, validating the discussion in Remark 2.3.



2.6. Numerical Results | 77

0,0S T T T T T T T T

0.048

0.046

0.044

Transmission Outage Probability

0.042 I X Simulation
—] =5
I L=15
0.04 — ] — 00 |
= No Relay
20 50 60 70 80 90 100 110

dSR (m)

Fig. 2.14 Transmission outage probability versus dqg with various L

2.6.8 The Impact of The SNR Threshold

In this part, how the value of y,;, affects the TOP performance will be analyzed. Fig. 2.15
depicts the TOP curves versus y,;, with different k values. From this figure, one can observe
that there exists an optimal value of y,, which can minimize the TOP curves. This is
because, concisely speaking, the value of y,;, directly influences the occurrence frequency
of the FD SWIPT mode, which is determined by the activation condition as {ySD < J’th} N
{E; > E,,}. The dilemma of “never or less frequently using R” and “using R too much”
makes the optimal y,, possible. Besides, the optimal value of y,, is independent to k.
However, a more solid SIC degree, i.e., a smaller £, is still preferable, which is consistent

with the discussion in Subsection 2.6.6.
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2.7 Chapter Summary

In this chapter, a novel wireless relaying transmission scheme termed as HOR was initi-
ated for UAV-relaying networks. To enable SWIPT and true FD functionalities, a practical
finite-capacity hybrid energy storage model was applied. The UAV-relay can work oppor-
tunistically in either the PEH or the FD SWIPT mode, not only providing a smarter way to
manipulate available wireless energy but also improving the overall wireless transmission
performance. To track the dynamic charge-discharge behaviour of the PEC, a discrete-
state MC method was adopted, based on which the stationary distribution of energy state
transition was quantified. Furthermore, covert communication and transmission perfor-
mances of the proposed HOR system were analysed via deriving closed-form expressions
of minimum detection error probability and transmission outage probability. Numerical

results validated the correctness of aforementioned analyses, the impacts of key system
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parameters were discussed and fundamental trade-offs were exposed. Through analytical
derivations and numerical simulations, it is proved that the proposed HOR scheme can en-
hance wireless energy manipulating efficiency, wireless transmission outage performance

and privacy level, which provides a neater solution for UAV-relaying networks.

2.8 Appendix

2.8.1 Proof of Lemma 2.1

As each symbol of the received message vector yp, in a specific transmission slot follows

1.1.d. complex Gaussian distribution, yp [@] is ruled by the following distribution

-

CN (0, Pslhgpl® + Prlhgpl® + Prlhgpl” + o), %,

I\

G (0, Ps|hgp|* + (Pg + Py) |hgpl*+ : (2.47)

(PR+PA>|ilRD|2+O-%>’ %1

Let yp (W) = [yp [11(w),yp[21(W), ..., yp [n] (w)] denote the observation condi-
tioned on y, where yp, [@] (W) ~ €4 (0,03 + ). Note that y represents the sum vari-
ance of D’s received signals from S and R. To distinguish the null hypothesis #, from
the alternative hypothesis 7, a couple of non-negative and real-value RVs ¥, and ¥, are

introduced, whose probability density functions (PDFs) are compactly given by

- —¢0
b~ s )
ﬂPRgRRDRD ’ x> 0.4 =0
exp S )
Sy (y) =3 B(PR+PA)QRD —1° (2.48)
! B(Pr+Py)Qrp X>1q=
0, otherwise

where ¢y = PsQgp + (1 — f) PRQgp and ¢ = PsQgp + (1 — f) (Pr + Pa) Qgrp-
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Furthermore, the PDF of vector yp given y can be calculated as

Syow) ¥ =
yoy) al):[] ju (612) + W)

_ lyplolw)? .
. exp( opHy ) [ 1 ] ( I |yD[w]<u/>|2>
= ) exp — .

m(od +w op+w

(2.49)
Here, invoking Fisher-Neyman Factorization Theorem [120], the total received power in
a transmission slot Y. _, |yp [@] (w) |? is a sufficient statistic for D’s hypothesis test. It
is worth noting that Y, _, |yp [@] (w) |* = (of + w) &3, where 2, denotes chi-squared
RV with 2n degrees of freedom. Because D knows the statistical knowledge of his received
signals when either hypothesis holds, applying Neyman-Pearson Lemma, the optimal test-

ing method for D to detect is likelihood ratio test (LRT), given by

_ fYDl%l (J’) 9;1

A = T, 2.50
(yD) fynl%o 7 50 ( :

where I' = Pr (%)) / Pr (%) = 1 due to the application of equal a priori assumption. D

does not have instantaneous knowledge of either ¥, or ¥, so it modifies its LRT as

B, | Fyo0 @] 2
A (yp) = z T (2.51)
v,y [0 0] 20

Note that RV X is smaller than RV Y in the likelihood-ratio ordering, i.e., X <. Y, when
fy (x)/fx (x) is a non-decreasing function over the union of their supports.

Invoking (2.48), one has

S, (W)_ Py [PAW—(PR+PA>¢0+PR¢1] 2.52)

= ex
Jfo,(W)  Pr+ Py PP (Pr + Pa) Qrp

It is straightforward to find that (2.52) is non-decreasing over the union of supports of ‘¥,
and ¥, hence ¥, <, ;. From the statistical nature of chi-squared RVs, for any y; <y,
Yb (t,ul) <i Yo (l,l/z) stands. Then, according to Theorem 1, Chapter 11 in [121], the

monotonicity of A ( yD) is ruled by Stochastic Ordering and A ( yD) is non-decreasing
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W.I.L. ZZJZI lyp [@] (w) |2. Hence, the LRT (2.51) is equivalent to a received power
threshold test. Since any one-to-one transformation of a sufficient statistic remains the
sufficiency, the term Y _, |yp [@] |*/n is also a sufficient statistic. Invoking Lebesgue’s
Dominated Convergence Theorem, it is allowed to replace .fl’zzn/n with 1 when n - oo0.

Thus, one has

Ps|hsp|® + Prlhgpl® + Prlhgpl® + 0. %,
n
T=lim =~ Y yp o] = 2 2o (2.53)
T S n 1 Yp = Pslhspl +(PR+PA)|hRD| + . .
w=
\ (Pr+ Py) Ihgpl* + 05,
2
Then, the optimal decision rule at D can be expressed as T 2 7, where 7 denotes the
20

threshold which will be optimized to minimize Pg. After all, a radiometer which is able

to detect the total power of received messages at D, is proved to be optimal.

2.8.2 Proof of Theorem 2.2

Invoking (2.53), the false alarm and missed detection probabilities can be calculated as

Pr(li’lRD|2> T;j())’ TZ.]O

Pea = Pr (T > 7|%,) = Pr (Pxlhgpl* + jo > 7) = R ,
1, otherwise
(2.54)
PMD:Pr(T<T|%1>:Pr[(PR+PA)|ilRD|2+j1<T]
o2 <« T2 ;

0, otherwise

respectively. Because the uncertain part of channel R—D follows distribution Agp ~
€N (0, ﬂQRD), it is straightforward to know that |Agp|? obeys the Exponential distri-

bution. Thus, the CDF of |agp|? can be gained as Fiigpiz (¥) =1 —exp [—x/ (ﬁQRD)].
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Then, after some simple algebra calculations, the closed-form expressions of false alarm
and missed detection probabilities can be derived as (2.32) and (2.33), respectively. Invok-
ing (2.32) and (2.33), closed-form expression of detection error probability can be gained

after simple derivation as (2.34).

2.8.3 Proof of Theorem 2.3

To determine the optimal detection threshold of D’s radiometer, it is supposed to solve
the optimization problem as z* = arg min Pg. In the case of 7 < j,, the detection error
probability at D remains 1. This is the :)vorst case for D and D will never choose any value
satisfying 7 < jj. In the case of j, < 7 < j;, it is easy to find that P monotonically
decreases w.r.t. 7. Besides, the piecewise function P is a continuous function alongside
the whole feasible domain of 7. Thus, D will choose j; to minimize Pg, leading to Pg =
exp [(Jjo = Jj1)/ (BPr@rp)]-

In the case of T > j;, to determine the optimal value of 7, the first derivative of function

Pg w.r.t. 7 is calculated as

oPg k
0T PPy (Py+ Py) Qrp

(2.56)

where k=Pgexp [(j; —7)/ (B (Pr+Ps) Qrp)| = (Pr+Ps) exp [(jo— 7) / (BPrQgp)]-
It is easy to find that whether (2.56) is positive or not depends only on the value of k. After

simple manipulations, k can be modified as

J1— 7
B (Pr+ Py)

—exp [ln (Pe+Py)+ 2| (57)
Qrp P Prrp

k=exp |InP +

Besides, the Exponential function exp is monotonically increasing w.r.t. the feasible in-

dependent variable region. Thus, whether k is positive or not can be determined by

LR +PR(J'1‘T)‘(PR+PA) (Jo—7)
Py + P, PPy (PR + Pa) Qrp

k1=l
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PR Py (t = Pslhgpl* - o)

=1In + (2.58)
PR+ Py PP (Pr + Pa) Qp

Because 7 > j; stands in this considered case, the right hand of (2.58) is absolutely posi-
tive. However, the left hand of (2.58) is negative due to Py < Py + P,. Most importantly,
from (2.58), it is easy to find that k; is a monotonically increasing function w.r.t. 7. Let
k; = 0, the solution (2.36) can be gained. From (2.36), it is straightforward to conclude
that k; > 0 in the case of 7 > 7 o and ky < 0 otherwise. If j; > 7; _ holds, in the case
of 7 > j;, one can determine that kK > 0 and furthermore 0Pg/dz > 0, which means that
PE monotonically increases w.r.t. T when v > j;. Here, it is the optimal choice for D to
choose j; as the optimal threshold that is able to minimize Pg. If j; < 7; _g, one knows
that for 7 € < jl,rklz()), OP/d7 < 0 and for 7 € (Tkl=0,+oo>, OPg/dr > 0. Thus, the

optimal detection threshold for D is 7 _ in this case.

2.8.4 Proof of Corollary 2.2

In the case of j; > 74 g, 1.e., f 2 NI (PRQRD In %), the first derivative of
RTLA
P w.r.t. f can be calculated as
E P Jo~J1 exp Jo~J1 ’ (2.59)
op == B2 PRQpp BPRCRp

which is positive due to j, < j;. For j; <7 _g,1.e., f < — Py | hgp|?/ <PRQRD In P?‘P ),
RTLA

the first derivative of Pg w.r.t. § can be calculated as

oPy _ |hgpl?
op =T 20,

hgpl* P P hgpl>  Pr+P P
[exp(l kD) +In—"— )-exp(l &p| + =2 R >], (2.60)

P?Qrp  Prn PRt Py P?*Qrp Py PR+ Py

whose value is also positive due to the truth of Py > P, > 0. Thus, one can conclude that

P, monotonically increases as f increases.
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2.8.5 Proof of Lemma 2.2

Given that |Agg|%, |Agg|* and |hgp|? follow Exponential distribution, the corresponding
PDFs can be listed as f|;, 2 (x) = exp (=x/Qgg ) /Qgr, fpg, 2 (¥) = exp (=x/Qpg ) /g

and f,. 2 (x) = exp (—x/QRD) /Qgrp. Then, the derivation of FY%o (x) can be given by

1—p) Pslhgr|®>  Pglhgpl?
FY% (x) = Pr |min (1= ) Pslhsg| > k| ;Dl <x]|. (2.61)
0 (1 = p) kPg|hgg|? + oR op

To calculate (2.61), either element within the min function is smaller should be discussed.

1-p) Ps|hgp|? 2 .
In the case of — =25l SR2| - > Z&Ifol” (5 61 can be rewritten as
(1—p)kPR|hRR| +O'R GD

1
Fy) (x)

2

+o0 +o0 %
= /0 A(l—p)kPthRRlzﬂﬁ]x /0 flhRD|2 (yl) f|hSR|2 (y2) flhRR|2 (y3> dydy,dy;

(1-p)Pg
[(1—p>kPRIhRR|2+612; x (l—P)PS|hSR|20'12)

+0o0 (1—p) P - 2ok
+/0 /0 h /PR[(1 kPR Ik g Fingol2 (91) Singg 2 (32)

0

X fingg? (¥3) dyidyrdy;.  (2.62)

(1-p) Ps| hsg |* Plhgpl®

(1—-p)k Py | hgg [+0g op

In another case of (2.61) can be revised as

(1=p)kPRINRR > +of |

?) +0o0 [ (=p)Ps +o0
B = aprsiseied, | Simol (V1) Singe (32)

PR|(1=p)kPRIARR >+0g

X finge? (¥3) dyidyadys.  (2.63)

After calculating simple triple-integrals in (2.62) and (2.63), (2.61) can be expressed as
_ g @) . ] . .
FYW0 (x) = FY% (x) + FY?’/o (x), of which the closed-form expression is stated in (2.41).
For conciseness, the detailed derivation of FY%l (x) is omitted, which follows similar

procedure to the calculation of Fy_ (x) as shown above.
0
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2.8.6 Proof of Lemma 2.3

The CDF of yp | # can be constructed as F, |5 (x) = Pr <ySD + Yy, <x[)rsp < y,h> .
Note that variable yqp should be constrained as ygp < 7, due to the nature of FD SWIPT
mode. Invoking (2.41) and after some simple mathematical computations, one can obtain

the closed-form expression of FJ,D| %y (x) as (2.42).

2.8.7 Proof of Lemma 2.4

The closed-form CDF expression of yp|#’; should be calculated in the way similar to the
derivation of (2.42). However, this way is unfortunate to be mathematically intractable.

To tackle this problem, Gauss-Kronrod Quadrature (GKQ) method is invoked, shown as

FJ’D'%I (X) =Pr |:7/SD + Y%l <Xx ﬂ YsD < yth:l

2 2
Yth o oy
D D
= [T D R x—pexp| - dy
/0 PsQgp 7 PsQgpy
)

-

'
fun

n
~ Z o;fun (y;), (2.64)
i=1

where ¢; and y; denote the weights and points that are essential to evaluate the func-
tion fun(y). Note that the GKQ formula is an adaptive method for numerical integration,
which is a variant of Gaussian quadrature. The built-in function of MATLAB named
quadgk(-, -, -) is utilized to calculate (2.64), which employs adaptive quadrature based on
a Gauss-Kronrod pair (15’ hand 7" order formulas). Then, one can derive the closed-form

approximate CDF expression of yp | # as (2.43).

2.8.8 Proof of Theorem 2.4

In the proposed HOR model, the TOP in the case of FD SWIPT should be constructed as

TOPFS=Pr[10g2 (1 +7D) <Rth ﬂ %0 ﬂFS] +Pr[10g2 (1 +YD) <Rth ﬂ %1 ﬂFS]
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h

=Pr [logz (I+7p) < Ry ﬂ o ﬂ Ysp < Vm] Zfﬁ‘

i=@

Pr [10g2 (1 + yD) < Ry, ﬂ ) ﬂ Ysp < J’zh] fo

i=@

L
1
=32k Pr[yD|%0<2Rm ~1(Vrsp <y,h]+Pr [yD|7/1 <2Ra—1(rsp <y,h] (2.65)

i=@p \ U\ J
'

1 };

where the factor 1/2 is due to the assumption of equal a priori, R, is the target rate under
which the transmission outage occurs. Note that step (a) in (2.65) holds, because of the
fact that the energy requirement is independent of other factors. With the help of Lemma
2.3 and Lemma 2.4, the closed-form expressions of f; and f, can be derived, which is
achieved by simply replacing variable x in (2.42) and (2.43) with factor 28 — 1. Substi-
tuting f; and f, into (2.65), one can calculate the closed-form expression of the TOP in

FD SWIPT mode as (2.44).

2.8.9 Proof of Theorem 2.5

Similar to the derivation of (2.44), in the PEH mode, the TOP should be constructed as

TOPygy; = Pr [1og2 (1+7p) <R[ ) PEH]

p—1
= Pr(ysp <2Rn — 10ysp <7p) X, &+ Pr(rsp <28 —1nysp > 7). (2.66)
< ~ ~ i=0 < ~ v
/3 f4

In the case of {ysp < ¥} N {E; < E;}, Pr(rsp < 2Rin — 1) = 1 stands. It is worth
noting that hereby Pr (ySD < 2R — 1) and Pr (ySD < yth) are independent with each other
because D ceases signal processing and forces Pr (ySD < 2Rm — 1) = 1, resulting in f3 =

Pr (ySD < y,h) = ggp. In the case of ygp > 7;;,, the main wireless channel is good enough,
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the closed-form expression of CDF of yqp|ysp = 7, can be derived as

FYSD lYsD=7:in (x) =

€X —m — €X - 612)x >
p PsQqpy p PsQqpy o X Yt (2 67)

O’ x < Yth

Hence, the closed-form expression of f; is given by f4 = F, (2th - 1). Substi-

splYsp2Yin

tuting f5 and f, into (2.66), the closed-form expression of the TOP in PEH mode can be

derived as (2.45).



Chapter 3

Joint Resource Block and Beamforming

Optimization for Cellular-Connected
UAYV Networks: A Hybrid D3QN-TD3

Approach

3.1 Introduction

Up to date, there exist several related works devoted to integrating UAVs into current cellu-
lar networks [3, 4, 57, 58]. However, protecting ground UEs (GUEs) located in current cell
or other cells within the coverage of UAVs was not considered in references [57] and [58],
which may significantly deteriorate the transmission performance of potentially existing
co-channel GUEs. Although literature [3] and [4] considered interference mitigation issue
while protecting ground UEs in cellular-connected UAV networks, they contain practical
limitations. First, they both assumed fixed-location UAV in their considered model, with-
out involving UAV’s mobility. Second, the A2G channel models they applied are based on
either oversimplified free-space pathloss channel model or slightly advanced probabilistic

LoS channel model. It is worth noting that probabilistic A2G channel model is statisti-
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cal, which means that it can only reflect A2G pathloss gain in an average manner without
considering local building distribution where UAVs are actually deployed [36]. Last but
not least, most of traditional optimization-based problems, e.g., those applied in [3, 4], are
highly non-convex and hard to be tackled efficiently, even with adequate information of
needed evaluation factors.

Motivated by the above observations, radio resource management issue of interfer-
ence coordination and beamforming design within downlink cellular-connected UAV net-
works is considered in this chapter, where the fundamental challenge of integrating UAV's
into worldwide cellular networks that are designed delicately for serving GUEs is taken
care of, while ML-native solution for achieving harmonious coexistence of non-terrestrial

transceivers, i.e., UAVs, and terrestrial nodes, i.e., GUEs, is designed.

e In contrast to the majority of related literature adopting statistical A2G channel
model for achieving mathematical tractability, e.g., probabilistic A2G channel model,
LoS/NLoS A2G pathloss is determined via checking potential blockages between
UAYV and BSs in this chapter, as per one realization of building distribution sug-
gested by the International Telecommunication Union (ITU) [122]. The considered
A2G channel model is more practical than its statistical counterpart which can only
reflect average pathloss gain over large number of similar building distribution re-

alizations because the layout of local area can barely vary in practice.

e A joint time-frequency RB allocation and beamforming design optimization prob-
lem is formulated to minimize the EOD of UAV, for arbitrary trajectory and small-
scale fading modelling. Specifically, the RB allocation is utilized to assign proper
RB resource to UAVs while ensuring that the terrestrial transmissions are not vi-
olated by the potential co-channel interferences generated from BSs appointed to
serve UAVs. To enhance the quality of received signals at UAVs after RB allocation,

transmit beamforming design is invoked subject to imperfect channel estimation.

e The practical consideration of building distribution based pathloss model and the

generality of the formulated EOD minimization problem to trajectory and small-
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scale fading make it extremely difficult to be solved by classical optimization tech-
niques, e.g., convex optimization. To cope with this hassle, a DRL-based solu-
tion is proposed after mapping the proposed EOD minimization problem into an
outer MDP and an inner MDP, reflecting the dynamic RB possession environment
at BSs and small-scale fading’s time-varying characteristics, respectively. The outer
MDP contains discrete action space (i.e., RB indices), which is tackled by invoking
D3QN, while the continuous action space (i.e., beamforming vectors) in the inner
MDP is dealt with TD3. The hybrid D3QN-TD3 solution learns to optimize EOD
performance via interacting with environments in the online centralized training
phase, after which the trained D3QN and TD3 agents can be deployed to offer inde-

pendent EOD performance gains in the phase of offline decentralized exploitation.

Chapter organization: Section 3.2 presents system model and problem formulation.
Section 3.3 shows the proposed hybrid D3QN-TD3 algorithm. Simulation results and

chapter summary are presented in Sections 3.4 and 3.5, respectively.

3.2 System Model

Fig. 3.1 System model

In this chapter, joint optimization of RB allocation and beamforming design for down-

link cellular-connected UAV network is considered, where a set %8 = {1, ..., B} of B ter-
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restrial BSs servesaset % = {1,...,U} of U drone UEs (DUEs)andaset % = {1, ...,G}
of G GUEs using a set # = {1,..., K} of K RBs at each BS, in a given subregion (e.g.,
Fig. 3.1) of cellular network. Each DUE is assumed to equip single antenna for receiving
wireless information and so as each GUE, while all the terrestrial BSs employ antenna
array for message emitting. Specifically, each terrestrial BS b € 9 possesses M anten-
nas, serving g, GUEs with orthogonal RBs (so there does not exist intra-cell interferences
within each cell), where g, > 1,Vb € % and ) sz 1 8, = G. Different from terres-
trial transmission scenario, DUEs fly in the sky with relatively high altitudes, resulting in
higher probability achieving LoS-dominant links from BSs. Thus, DUEs are able to con-
nect with more BSs within their wireless coverage, which is a distinguishable feature com-
pared to terrestrial transmissions. However, this characteristic is a double-edged blade, in
terms of not only inducing more and stronger desired signals but also richer co-channel
interferences. To practically reflect the aforementioned double-edged blade feature, each
DUE is considered to be associated with at least one BS when possible, taking advantages
of macro-diversity gain from terrestrial BSs. Unfortunately, the assigned RB for a DUE
might be already occupied by some GUEs due to heavy frequency reuse in cellular net-
works, severely interfering the DUE via LoS-dominant channels. Therefore, RB allocation
plays an important role in the considered cellular-connected UAV network. Besides, after
RB assignment for a DUE, wireless transmission performance can be enhanced via invok-
ing transmit beamforming technique at the corresponding serving BSs. Note that transmit
power control strategy at each BS is not considered in this chapter, and thus P, = P is
fixed for all terrestrial BSs.!

The 3D locations of each DUE, each ground BS and each GUE are denoted as g, =
(X, Vs 1) Gy = (X3, ¥p» 2,) and cfg = (X4, ¥4, 0), respectively. For simplicity and without

loss of generality, the flying altitude of each DUE is assumed universally as 4, = h and the

"Transmit power control is indeed an important approach for interference management in cellular net-
works. In the considered model, it is straightforward to infer that all BSs should communicate with their
paired DUEs using maximum transmit power, which may cause stronger ICIs to co-channel GUEs. Besides,
all the occupied BSs are supposed to apply their minimum transmit power to reduce the level of co-channel
interference to DUEs, which inevitably deteriorates the transmission quality for their severing GUEs. There-
fore, to tackle this dilemma, the transmit powers of all considered BSs are fixed as a constant P.
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height of each BS’s antenna is set identically as z, = z, where h > z always holds in the
considered model. Each DUE is supposed to reach its destination g,(D) from predefined
initial location g,(I) with time duration 7T,.2

For clarity, the considered subregion is formulated as a cubic sphere specified by
[X105 Xup] X V10> Yupl X [Z16» Zypls Where the subscripts “lo” and “up” represent the lower
and upper boarders of this 3D airspace, respectively. Furthermore, the coordinate of ar-
bitrary DUE u at time t € [0, 7,] should locate in the range of g, < G,(t) < §,,, where
Glo = (X105 Vios Z10)s Gup = (Xyps Yup» Zup) @nd < denotes the element-wise inequality. The
start and final locations of each DUE can be given by ¢,(0) = ¢,(I) and ¢,(T,) = ¢,(D),

respectively. Then, the trajectory of each DUE u can be fully traced by g,(¢), Vt € [0,T,,].

3.2.1 The RB Allocation Criterion

To properly manage ICIs among GUEs, the following RB assignment criterion is adopted
for the considered cellular-connected UAV network. The set 7 .7,(p) is defined to denote
the first p-tier BSs that encompass a specific BS b € & in the considered model, where
1 < p £ 3 and T J,(p) includes this focused BS. When arbitrary RB has been assigned
to any GUE in the serving cells of BSs from I .7,(p), this RB should not be allocated
to the focused BS b for serving other GUEs in the corresponding cell covered by this
focused BS.? To ensure that the total RB resource is sufficient for all GUEs in cells of
BSs from 9 .7, (p), the constraint Zi)eg‘ () &b < K should hold, where card(J 7,(p)) =
3p% + 3p + 1 and card(-) indicates the cardinality of a set. In this regard, the focused
BS b cannot generate any interference to GUESs in the serving cells of BSs from I .%,(p).
For GUEs outside the serving cells of BSs from I .%;(p), the potential ICIs caused by
the focused BS b are assumed to be negligible, due to severe terrestrial NLoS pathloss
and shadowing. For each possible RB k, some BSs may already occupy it to serve GUEs

in their corresponding cells. These BSs are recognized as the occupied BSs, which are

2For specific DUE u € %, the flying duration T, , 1s determined by its trajectory and velocity.
3In the case of sufficiently large p, the ICIs among all GUEs become ignorable, thanks to sufficient
frequency reuse and severe terrestrial pathloss.
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@p=1,card(T (1) =T (b) p =2, card(T 5,(2)) = 19

S 21qeiesy ()

() p=3,card(T 7,(3)) = 37 (d) An example of BS grouping

Fig. 3.2 Illustrations of the defined first p-tier set of a focused BS b and an instance of BS
grouping for RB k in the case of p = 1

denoted by the occupied BS set B% c %B. Furthermore, the set % = B\BX includes
all the potential BSs, where the RB k is idle. For a specific RB k assigned to serve a
DUE, the corresponding associated BSs come from the potential set %g(’,‘, while all the
non-associated co-channel interferences root from the occupied set %*. For a DUE u
associated with an RB k, it is supposed to be paired with all BSs in the potential set @f ,
to take the advantage of macro-diversity gain. However, this may generate additional ICIs
to GUEs in the serving cells of BSs from I fbegg(l’)- To avoid ICIs attenuating the
receiving quality of existing GUEs over the same RB, a potential BS b € 95?(1,‘ can be
allowed to pair DUE if and only if there are no other BSs applying RB k in its first p-tier
neighbours, i.e.,

By N T Iyegt(p) = . (3.1)
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Then, the available BS set Z% ¢ % is defined to include all BSs in the potential BSs
that satisfy (3.1). For ease of understanding, Fig. 3.2 depicts illustrations of the first p-tier

set for p = 1, 2, 3, and one example of BS grouping for an RB k.

3.2.2 Channel Models

In contrast to terrestrial transmission between BS and GUE (denoted as B2G thereafter),
wireless links between BS and DUE (denoted as B2D thereafter) have higher probability
experiencing LoS pathloss. In the following, channel model of the considered cellular-

connected UAV network will be introduced.

B2G Channel Model

The B2G channel may include the large-scale fading caused by NLoS-dominated pathloss
and corresponding small-scale fading exponent in practice. In this chapter, downlink in-
terference management problem is concentrated, where the terrestrial transmissions could
affect the B2D communication quality as a part of co-channel interferences. This is be-
cause the occupied BSs may apply some channel-aware precoding techniques to enhance
their transmissions with corresponding GUEs. Specifically, the terrestrial small-scale fad-
ing component is denoted as 7zbg e C"M vb e B, g € €. Note that the modelling of zbg
is trivial for this chapter, which means that h pg can take form as any practical and feasible
small-scale fading model, e.g., Rayleigh fading channel. In numerical results, an example

of terrestrial small-scale fading will be specified to perform the simulation.

B2D Channel Model

Probabilistic B2D pathloss model is widely applied to characterize wireless pathloss be-
tween BS and DUE in current literature, where LoS and NLoS channels are considered sep-
arately with different occurrence probabilities. According to 3GPP UMa channel model
[32], the expected B2D pathloss in dB can be given by PL,, =Pr; ,¢PL; (s +PryiosPLnLos:

where Pr; ¢ represents the occurrence probability of LoS link, Pry; ,g = 1 — Pry g indi-
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cates that of NLoS channel, and PL; ¢ and PLy; g denote the pathlosses for LoS and

NLoS links, respectively. Specifically, it turns out that

min{ <L, 1) [1 _exp (—L)] +exp (—’ﬂ) . 22.5m < h < 100m
Pry o = b 2 2 , (32

1, 100m < A < 300m

28.0 + 221og (dy,) + 20logo (1), I = LoS
PL, = , (3.3)

—17.5 + [46 — Tlog;o ()] logyq (dy,) +201og;, (407rfc > , | =NLoS

3

inwhichr, = 4 /dgu — h2,e; = max{4601log,, (h)—700, 18}, e, = 4300 log,, (h)—3800,
f. represents the carrier frequency and d,,, = ||g, —q,||, calculates the Euclidean distance
between DUE u and ground BS b. Since the proposed design on beamforming vectors aims
to be adaptive to arbitrary small-scale fading environment, 7zbu eCPM vbe BueUis
denoted as the small-scale fading component for B2D channels and an example of specific
B2D small-scale fading model will be discussed in the numerical result section.

To practically reflect the characteristics of B2D channels in the considered subregion,
one realization of the statistical model suggested by the ITU is generated to formulate the
local building distribution (including structures’ horizontal 2D locations and their corre-
sponding heights). There are three key parameters in the ITU building distribution model:
1) & indicates the ratio of land region covered by buildings to the total land area; 2) f
represents the mean of buildings per unit area; and 3) 7 determines the distribution of
building heights, which is usually following Rayleigh distribution with mean # > 0. Note
that the B2D pathlosses are modelled and tracked in terms of average large-scale channel
gain via calculating the occurrence probabilities of LoS/NLoS links as depicted in (3.2),
in the vast majority of related literature. This kind of approach is more mathematically
tractable, however, it can only reflect the ergodic characteristics of B2D channels over
many realizations of building distribution. On the contrary, in this chapter, the occur-
rences of LoS/NLoS links are alternatively tracked via checking whether the line of B2D

channel is blocked or not by any building, given one realization of ITU building distribu-
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tion model.* Then, the corresponding type of large-scale pathloss can be determined for
each time of B2D channel regeneration. Fig. 3.3 illustrates the considered one realiza-
tion of local building distribution in this chapter, including their 2D locations and heights
(Fig. 3.3a) as well as its corresponding 3D view (Fig. 3.3b), where 25 building clusters
and 37 BSs are depicted in a square subregion with side length D = 3 km, road width
D =0.02km, & = 0.3, § = 103 buildings/km? and 7 = 20 m. With these parameter set-
tings, the total amount of buildings is fD? = 927 and the expected size of each building
is a/f ~ 0.003 km?. Besides, the maximum height of buildings is clipped to be under 70

m, and the locations of BSs are presented by white asterisks in Fig. 3.3a.

3.2.3 SINR at DUE

Denote C[ﬂ‘(t) € {0, 1} as the RB association indicator which means that DUE u is occu-
pying RB k at time  when le(t) = 1, and C¥(¢) = 0 otherwise. Each DUE is assumed to
occupy at most one single RB each time>, then Zﬁl CL’f(t) < 1 holds.

If RB £ is feasible to be assigned to DUE u, i.e., C,’f(t) = 1, it has to satisfy the RB
assignment criterion presented in Subsection 3.2.1. Then, all BSs in the potential set %‘2’:
meeting the regulation (3.1), i.e., b € 9§(’,‘ , are recognized as the available BSs for DUE
u, to take the advantage of macro-diversity gain. Besides, all BSs b € 995 occupying the
selected RB k should be classified as the source of co-channel ICIs. Thus, the received

signal of DUE u over RB k at time 7 can be given by

N e T
Yoy =Cio| Y, V10T hyiyx, )+ ). V10T Ry, yexpe (0 + 1k |, (3.4)

be Gk beRBE

where 0, € CM*! indicates the transmit beamforming vector at BS b € %* for DUE

u, lZ)bg e CM*! represents the transmit beamforming vector at BS b € 93;‘ for cor-

“Note that this approach is more practical because the building distribution of a subregion in real world
can hardly vary over time (say, days even years).

3In this chapter, the scenario in which each DUE can only occupy one single RB each time is focused.
Integrating more sophisticated RB allocation approaches might be considered in the future works.
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responding GUEs, x,(t) ~ €./(0, P) is the intended message6 from BS b to DUE u,
Xpg(t) ~ €./ (0, P) implies the signal for GUEs, and n{j ~ €N, 02) denotes the re-
ceived AWGN at DUE u. Note that explicit type of large-scale fading between BS b and
DUE u at time ¢, i.e., | = {LoS,NLoS}, can be determined via checking possible block-
ages according to the considered one realization of local building distribution mentioned
in Subsection 3.2.2. Taking the advantages of macro-diversity gain, all signals from the
associated BS b € 9§§ are recognized as the legitimate in-phase information and thus can
be added constructively at DUE u [56, 123]. The CSI of 71,,”, b € B* and 7zbg, b € B¥ can
be estimated via widely applied MMSE-based methods. Unfortunately, the CSI cannot be
perfectly obtained in practice, due to estimation error and/or feedback delay [124, 125].

Therefore, the imperfect CSI model on ;zbu, b € % is considered in this chapter, given by

Py = /Pl + V1= pA, (3.5)

where ';'zbu indicates the estimated CSI, A~EN (0, I') denotes the CSI estimation error
vector and p € [0, 1] is the correlation coefficient between 711,” and Zbu. For an impractical
case p = 1, i.e., perfect CSI availability at the available BSs, maximum ratio transmission
(MRT) precoding w,, = Ezu/ ||Ebu|| is obviously the optimal option. However, for prac-
tical consideration, w,, should be designed according to the estimated CSI ?zbu, whose
performance will be inevitably deteriorated due to the existence of CSI estimation error.

Then, the instantaneous SINR of DUE u at time ¢ can be expressed as [56]

—PL;

2
« G [Zbe&?é‘ P10T|7lbub7)bu|]

Fu(t) = Z

= I5@t) + o2

; (3.6)

-PL;
where IX(t) = Zbegg,’,‘ PO |hbuﬁ)bg|2 means the ICIs introduced by the co-channel

BSs in the occupied set %~.

The available BSs are supposed to be able to cooperatively transmit the intended signal to DUE, man-
aged by the central coordinator (to be introduced later) using, e.g., the cooperative beamforming technique
[56], while the procedure and overhead of cooperative transmissions are out the scope of this chapter.
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3.2.4 Problem Formulation

Straightforwardly, the received SINR of DUE u at time 7 (3.6) is arandom variable because
of the randomness introduced by small-scale fadings 71/;” and 71bg, as well as the RB alloca-
tion. Specifically, the RB allocation affects I, (f) in terms of how many available BSs and
interfering BSs will be involved, i.e., card (@ff) and card (99(’)‘), respectively. Then, with
given RB allocation, the transmit beamforming vector 0, should be designed to adapt
to the small-scale fading 7zbu. Therefore, the corresponding TOP can be formulated as a

function of C¥(¢) and i0,,, given by
TOP,{CL(), Wy} =Pr[T,(t) <T;,], (3.7)

where Pr outputs the probability calculated w.r.t. the aforementioned small-scale fadings
and B2D transmit beamforming vector, with given RB allocation. Then, via taking integral
of TOP over the corresponding flight time duration, the EOD [36] of DUE u travelling with

trajectory q,(1),Vt € [0, T,] from g,(I) to g,(D) can be calculated as

Tu
EOD, {Ck), by,} = / TOP,{CK), iy, }dt. (3.8)
0

This chapter assumes that DUEs move with known trajectories g,(t),Yu € %,t €
[0, T,,] and constant velocity V,, then T,, in (3.8) can be implied as a fixed parameter pos-
ing no impacts on the overall integral.” Hence, the EOD of arbitrary DUE u is fully de-
termined by le (1) and 0,,. Without loss of generality, in the following contents of this
chapter, a specific DUE in Fig. 3.1 is concentrated to evaluate the proposed scheme which
can be easily applied to other DUEs with orthogonal RB assignment. For enhancing the

downlink transmission quality of DUE across its travelling trajectory, this chapter focuses

"Note that RB allocation and beamforming design are independent of trajectories, which means that the
proposed solution is suitable for arbitrary UAV trajectory. This setup can be justified by the following facts:
1) as elaborated in Subsection 3.2.1, RB coordination for DUEs depends on the current RB possession of
each BS and has nothing to do with DUEs’ mobility; and 2) beamforming design depends on the estimated
CSI which is related to the corresponding modelling of small-scale fading. Therefore, trajectory planning
task is trivial in the considered system model and thus excluded from this chapter.
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on minimizing its EOD. Then, the corresponding optimization problem can be stated as

min EOD,{CX®), @, ), (3.9a)
C:f(t),bﬁbu
K
s.t. Y Crn) <1,vt €[0,T,], (3.9b)
k=1
||1iy,]1> = 1,Vb € B* vt €[0,T,), (3.9¢)
Ckt) e {0,1},Vk € #,Vt € [0, T,]. (3.9d)

The constraint (3.9b) makes sure that the DUE can at most occupy one single RB each
time. The constraint (3.9¢) is the normalization requirement for transmit beamforming
vector, which ensures that the transmit power of each available BS b € 93?5 equals to P.
The constraint (3.9d) indicates that Cl’j () is a binary variable.

It is extremely challenging to solve the proposed optimization problem (3.9), given the
listed constraints. The main difficulties can be concluded as follows: 1) the closed-form
expression of EOD,{Ck(t),,,} should be derived, which is extraordinarily sophisti-
cated, if not impossible; 2) the variations of LoS/NLoS pathloss, small-scale fading 71/)“
and the B2G transmit beamforming vector LT)bg should be taken into consideration, which
are dynamic over time horizon and dependent on their modellings; and 3) even given the
closed-form expression of the optimization object (3.9a) and the perfect knowledge of
the considered cellular-connected UAV network, it is still mathematically inefficient to be
tackled for the non-convexity of mix-integer constraint (3.9d) and that of the optimization
object (3.9a) w.r.t. C,f(t) and twy,. Fortunately, DRL is famous for being able to learn
patterns from unknown environments in a trial-and-error way and thus can help solve so-
phisticated optimization problems via inherently maximizing its long-term return of raw

optimization objective. Thus, this chapter resorts to initiating a DRL method to solve (3.9).
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3.3 The Proposed Algorithm

3.3.1 The Formulation of MDP

To realize the DRL-based solution for the proposed optimization problem (3.9), the first
step is to formulate (3.9) into MDP which is based on discrete time slots. The length of
time slot is defined as 6, for the considered model and thus the number of time slots is
equal to N, = T,/5, for the DUE u. Note that the duration of time slot 6, should be
designed as small as possible, to achieve that the distances between the DUE and BSs
remain approximately constant and stable within each time slot. In this regard, the EOD

expression can be rewritten as

Nu
EOD,{CKn), ;) ~ Z 8,TOP,{Ckn), 0y, ). (3.10)

n=1

However, even with given CL’f (n), the closed-form expression of the transmission out-
age probability TOP,{CX(n), i0,,} is still difficult to be derived, for its complex formu-
lation and the lack of designed B2D transmit beamforming vector ;. Alternatively,
this challenge can be circumvented via numerical evaluation on the raw measurements of
received signals at the DUE. The reason is that, compared to the length of time slot 6, (typ-
ically, on the magnitude of seconds), the length of channel coherence blocks (typically,
on the magnitude within milliseconds) is relatively small. Then, provided with CL’,C (n) for
a time slot n, the indicator of TOP can be defined as I TOPM{CL’f(n), Wy, (n,0); iz(n, H}=1
in the case of I,(n, i) < I};, and ITOPM{C,f(n), Wy, (n,i); iz(n, i)} = 0 otherwise, where
h(n, i) and 10y, (n, i) indicate one realization of small-scale fadings and that of correspond-
ing beamforming vector, respectively.

Then, the corresponding TOP can be calculated as

TOP,{Ck(n), Wy} = Ej, 5 [ITOP,{CEn), @y, (n,i); h(n,1)}] . (3.11)
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To realize the average calculation Ej, ; over h and @ in (3.11), ¢ times of SINR mea-
surement should be performed.8 Furthermore, the arithmetic TOP of the DUE u can be

expressed as

S

= - l — ~N. 7 .

TOP,{CKn), iy,) = c D ITOP(CL(n), iy, (n, i); h(n, )}, (3.12)
i=1

When sufficiently large amount of SINR measurements is performed, i.e., ¢ > 1, the

statistical average in (3.11) can be alternatively replaced by its arithmetic counterpart in

(3.12).9 Furthermore, the EOD expression in (3.10) can be modified as

u

EOD,(Ckm. iy} ~ 3 Y

n=1 i=1

ITOP,{CK(n), iy, (n, i); h(n,i)}. (3.13)

n |

Then, the original optimization problem (3.9) can be approximately revised as

. N“ d 61,{ k — ~N. 7 .
min Y LITOP,(CEn), iy, (n, ); h(n, i)}, (3.14a)
Chk(n), @y, (n,0) =] 1=
K
s.t. Y Ckm) < 1,Vvne[1,N,], (3.14b)
k=1
||y, (n,)|1* = 1,Vb € BX,¥n e [1,N,], (3.14c)
Ckn) € {0,1},Vk € H,Vn € [1,N,]. (3.14d)

Inspired by cloud radio access network (C-RAN) [126—130] and cell-free (CF) dis-
tributed MIMO [131], the terrestrial BSs are controlled by a central coordinator ()10
via high-speed fronthaul links (e.g., optical fibre), to realize the joint RB allocation and

beamforming design task. Once the DUE u registers into the cellular network, the C2 will

8The existing soft handover technique, accompanied with reference signal received power (RSRP) and
reference signal received quality (RSRQ) reports, can be applied to help complete this kind of task [36].

°In the case of ¢ — +co, lim_,, TOP,{Ck(n), w,,} = TOP,{CXn),®,,} is guaranteed theoretically.

10The C2 is typically hosted in the edge cloud platform, and thereby provides high-performance comput-
ing and centralized signal processing for a large number of UEs’ data.
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first check the overall RB availability of all BSs, after which a map of RB possession (RBP)
formulated as a 2D matrix € (n) = [Cl’f(n)] »xk Will be generated. Note that Cl]f(n) = 1if
RB k is occupied by BS b at time slot n and Cl'f (n) = 0 otherwise. Then, for each RB
k, following the RB allocation criterion presented in Subsection 3.2.1, the corresponding
occupied set ¥, the potential set Z* and the available set Z* can be determined. Taking
the advantage of macro-diversity gain, the C2 will assign all available BSs b € 9§f,‘ to serve
the DUE cooperatively. Note that € (n) remains constant within each time slot and varies
among different time slots'!, capturing the dynamics of RBP at terrestrial BSs. For each
time slot, the current location of the DUE g, (n) is observable. Then, the large-scale fading
distribution between the DUE and BSs can be traced, via checking the potential blockages
between the DUE and each BS according to the local building distribution as mentioned in
Subsection 3.2.2. From the point of view on SINR in (3.6), the allocated RB k serving the
DUE can affect the value of SINR in terms of how many desired channels and interfering
links are introduced. Hence, the selection of RB resource can inherently impact the EOD
performance and should be delicately assigned. Next, with specific RB for each time slot,
the beamforming strategy adapting to the time-varying small-scale fading component can
further affect the EOD performance.

To handle the aforementioned two-step process, a hybrid D3QN-TD3 algorithm'? is
proposed, in which an outer MDP is formulated for the D3QN agent while an inner MDP
is forged for the TD3 agent. Specifically, the D3QN determines which RB should be se-
lected for each time slot and the TD3 outputs the proper beamforming vector for each links
between the DUE and BSs in the available BS set. Furthermore, the considered cellular-
connected UAV network is divided into the outer environment and the inner environment.
For time slot n, the DUE’s location ¢, (n) and the RBP map & (n) can be observed from the
outer environment. The inner environment is defined to reflect the time-varying character-

istic of small-scale fading, which is dependent on the outer environment. The reason roots

"'To avoid frequent handover, the selected RB k is considered as unchanged within each time slot.
I2please note that the proposed DRL-aided solution is trained online at the C2, rather than each BS.
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from that the B2D channel’s small-scale fading component is subject to the corresponding

experienced type of pathloss in practice, i.e., LoS or NLoS.

3.3.2 Description of the Hybrid D3QN-TD3 Solution

To derive a flexible solution which can solve the proposed optimization problem (3.14) in a
dynamic RBP and time-varying small-scale fading scenario, both the D3QN and the TD3
networks in the proposed hybrid D3QN-TD3 algorithm are trained interactively. Specif-
ically, the D3QN network maps the outer state and the RB selection into Q-values, while
the actor of TD3 agent transforms the inner state into beamforming vector and the critic

of TD3 network evaluates the corresponding Q values.

D3QN

To tackle the RB allocation problem, state-of-the-art DQN with duelling architecture will
be invoked to approximate Q function for the outer MDP. Compared to the original DQN
method, the duelling DQN explicitly separates the representation of state value and the
corresponding action advantages into two independent streams, as depicted in Fig. 3.4.
Specifically, the duelling DQN first estimates the state value and the action advantages
that are dependent on the state, and then calculates Q value for each state-action pair via
aggregation. The duelling architecture can help approximate Q function more robustly
and efficiently, especially when the Q values of various actions with the same state are
indistinguishable. The outer MDP for the D3QN agent can be formulated as follows. The
outer state s is the observed RBP map ‘Eo”(n)w, while the outer action a refers to the selected
RB k* = arg{CL’f(n) = 1}. When the dimensionality of &(n) is large, the computation
and trainin; burdens could be unbearable if the RBP map is just flattened and then fed to
the input layer of D3QN. To circumvent this issue, a convolutional neural network (CNN)
is attached to the D3QN, for efficiently capturing the features of the RBP map and com-

pressing the data fed into the D3QN. Specifically, the CNN contains three convolutional

3The transition of RBP map is stochastic and can be observed from the outer environment, which means
that the D3QN learning process is model-free.
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Fig. 3.4 Architecture of CNN-attached duelling DQN

layers, i.e., Convl, Conv2 and Conv3, as depicted in Fig. 3.4 where the corresponding
size of kernel, amount of filter and size of stride are denoted. Following each convolu-
tional layer, a standard max pooling layer with pool size 2 X 2 and stride 2 X 2 is invoked.
At the end, the pooled feature maps will be flattened into a vector which will then be fed
into the input layer of D3QN. The considered optimization problem is fully determined
by the value of SINR, given SINR threshold. In other word, larger available BS set and
smaller occupied BS set are favourable to minimize the EOD. For outer state s and the
selected outer action a, the corresponding available BS set g%?f* and the occupied BS set
93(’,‘* can be determined according to Subsection 3.2.1. Then, the outer reward function

can be defined as .
card (95’(1,c )

- card(9§f,‘*) + card(%g*).

r (3.15)

The designed outer reward function (3.15) infers that the selected RB k™ resulting in larger
available BS set and smaller occupied BS set is more favourable, which can effectively en-

large macro-diversity gain and meanwhile reduce the amount of interfering BSs according
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to the definition of SINR (3.6). Given the formulation of outer MDP, the duelling DQN
is invoked to approximate Q ps(S,al0p3) where 03 represents the parameter vector of
D3QN network. The D3QN network is trained to minimize its loss function via the gra-

dient descent updating rule, shown as

6D3(t + 1) = 0D3(t) - (XD3V9D3IOSS(9D3), (316)

where ap; denotes the learning rate and Vg loss(€p3) represents the gradient of the
D3QN network’s loss function w.r.t. @p;. For a mini-batch of N p; transitions randomly

sampled from the outer replay buffer, the mean-square loss function in (3.16) is defined as

Np3
1 2
lossOp3) = 17— D [y = Qos(sra,l6pa)] (3.17)
=1

where y, = 1, + yQps(s,11,a;,,10});) and 07, indicates the parameter vector of target
D3QN network. Note that the optimal outer action for the next outer state s, is selected

by the D3QN network instead of the target D3QN network, given by

a;, | = argmaxQp3(Sy41, ar4110p3). (3.18)
Apq

In this manner, the bootstrapping outer action is evaluated by the target D3QN network
while the selection of outer action is achieved by the D3QN network, which completes the
double Q learning procedure. If the outer action selection and evaluation are accomplished
via the traditional DQN method in (1.11), it leads to overestimation of Q values while
bootstrapping, i.e., learning estimates from estimates. Applying double Q learning method
to separate action selection and bootstrapping evaluation into two networks can address the
overestimation bias issue introduced by the max operator in calculating the loss function.
After several steps on updating the D3QN network, the target D3QN network will be

synchronized to the D3QN network via letting 6, = 0 ps.
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Given outer state s, the outer action selection strategy applied by the D3QN agent

follows the popular e-greedy policy, shown as

randi(K), with probalility e

a= , (3.19)
arg maxQ ps(s, k|0p3), otherwise
k=1,....K

where randi(K) indicates the process of randomly picking an integer out of the range [1, K]
and the exploration parameter € € [0, 1] is used to balance exploration and exploitation in
learning process. Specifically, larger e encourages the D3QN agent to explore the outer
action space, while smaller € results in more frequent exploitation of learned knowledge.
Usually, the exploration parameter ¢ is annealing alongside the learning process, inducing

the D3QN agent from more frequent exploration to higher probability of exploitation.

TD3

For each time slot n, the D3QN agent observes the outer environment, from which it ob-
tains the DUE’s location g,(n) and the RBP map € (n). Then, the D3QN agent selects
the outer action, i.e., the RB k*. With the selected RB and the current RBP map, the
corresponding set of available BSs 95(')‘* can be determined. To reduce the overheads of
CSI estimation and inner reward feedback, a random BS out of the current available BSs
will be selected by the C2 to perform beamforming optimization. Thereafter, the type of
large-scale fading between the DUE and the chosen available BS can be obtained. Then,
the inner MDP for the TD3 network can be formulated as follows. Each inner state § con-
sists of a list of estimated CSI ;zbu(n, i) and its corresponding type of LoS or NLoS. It is
well known that ANNs only accept real numbers as its inputs, rather than complex values.
To circumvent this problem, the complex-value estimated CSI Zhu(n, i) will be transferred
into a flatten layer which decouples the complex value and reshapes its real and imagery
parts into a real-value vector. However, the inner state § is dominated by the flattened
CSI, while only one dimension is left for the indicator of pathloss type, which raises the

issue of dimension imbalance. To circumvent this problem, the dimension for pathloss
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type indicator will be expanded from 1 to M via duplicating the pathloss type indicator
into M potions, making it comparable to the dimension of flattened CSI. Each possible
inner action a generated from the actor network is a vector of real-value numbers, which
will be reshaped into a normalized complex-value vector to construct the corresponding
beamforming vector 0,,(n,i). The transitions of inner states are determined by the ex-
perienced small-scale fading model. The inner reward function evaluates how good the
selected inner action is for each time of state transition. To reflect the quality of selected

inner action, the inner reward function is defined as

|7/l)bu(n7 i)ljjbu(na l)|2
174, (2, D)1

TD3 method belongs to actor-critic algorithms, in which the critic network learns Q

F= (3.20)

function approximation Q p(8, 4|0 p) and the actor network is the policy generator approx-
imating the action u(8]6,,), where 0 p and 6, denote the parameter vectors of critic and ac-
tor networks, respectively. Specifically, the actor network takes the inner state as its input
and generates deterministic continuous action as its output, unlike DQN-related methods
that output a probability distribution over discrete action space. Furthermore, the inner
action generated by the actor network will be leveraged to the input layer of the critic
network together with the current inner state. Then, the corresponding state-action value
will be generated at the output layer of the critic network. The actor network is invoked
to approximate the inner action and thus the exhaustive search of the optimal inner ac-
tion maximizing the Q function given the next inner state is avoided. Fig. 3.5 depicts the
overall architecture of TD3 network.

The gradient descent updating on the twin critic networks can be given by
9Pj(t +1)= Opj(t) - aPCVGPAloss(OPj), (3.21)
j

where ap. indicates the learning rate, Vg  loss(60 Pj) denotes the gradient of critic net-
j

work’s loss function w.r.t. @ P; and j € {1,2} is defined to distinguish the twin critics.
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Besides, the corresponding mean-square loss function is defined as

[ PP
loss(0r) = 5~ ; 5. - 0p6.4005)] . (3.22)
where
Ji = F,+ yminQpl8,,1. 6,,116,) + 47167 (323)
J=1,

represents the target Q value, Np is from a mini-batch of Np transitions randomly ex-
tracted from the inner replay buffer, and Ol",j, 0, and /'~ denote the parameters of target
critic network, those of target actor network and additive noise for target actor network,
respectively. Note that the operator min in (3.23) and .4~ are posed for accomplishing
clipped double Q learning and target policy smoothing, respectively.

Moreover, the actor network aims to maximize its expected return, defined as

J(0) = E5 {QI8;, u(5,10,)|0p1}, (3.24)

of which the derivative w.r.t. 6, can be calculated with help of the chain rule, shown as

Vo,J(0) ~ Eq {Vg, Q18 u(3,16,)105])
1 &
= 2 V.Qp®,,al0p)Ve, u(16,), (3.25)
P =1

in which the critic 1 is anchored by the chain rule for simplicity.

Then, the gradient ascent updating of the actor network can be expressed as
0,6+1)=0,0+ aPaVeﬂ J(0), (3.26)

where ap,, is the learning rate for the actor network. Moreover, to complete the delayed

policy update procedure, the actor, target actor and the twin target critics will be updated



3.3. The Proposed Algorithm | 110

less frequently than the twin critics, via updating the target networks every N 4 times the
twin critics are trained.
Furthermore, the Polyak averaging updates for the target critic and actor networks are

applied to enhance the stability of learning, given by
0, < 10p. + (1 —1)0,, (3.27)
J J J

6, « 16, + (1 - )6}, (3.28)

respectively, where 7 is the interpolation factor in Polyak averaging method for updating
target networks and it is usually set to be close to zero, i.e., 7 < 1.

Different from probabilistic action selection policy on discrete actions for D3QN agent,
exploration on continuous actions for TD3 agent can be realized via adding noise sampled
from a noise process ./ to the actor network, i.e., 4 < a + ./, where ./ can be chosen to

adapt to the inner environment [92]. For simplicity, zero-mean Normal noise with vari-

2
P

2

ance o, is applied to generate artificial noise for the output of actor network, where 674, is
annealing alongside the learning process to guide the TD3 agent from exploration to ex-

ploitation. Without loss of generality, the additive noise posed on the target actor network

2

P as well.

A~ is generated from zero-mean Normal distribution with annealing variance o

The Hybrid D3QN-TD3 Algorithm

The overall pseudo-code and interacting diagram of the proposed hybrid D3QN-TD3 so-
lution are given by Algorithm 3.1 and Fig. 3.6, respectively. All the neural networks
as well as their corresponding target networks and replay buffers are first initialized (line
1). For each learning episode, the outer environment will be initialized, which means that
the drone’s location should be reset to the start coordinate of the given trajectory and the
RBP map should be re-observed as well (line 3 and 5). For each outer epoch in a learn-
ing episode, the D3QN agent picks the outer action a; according to the e-greedy action

selection policy (3.19) and then the corresponding available set 9573" and the occupied set
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Fig. 3.5 Architecture of TD3 network

95’2 " can be determined following the RB allocation regulation as mentioned in Subsection
3.2.1 (line 6). Based on the local building distribution as introduced in Subsection 3.2.2,
the types of wireless links (LoS or NLoS) between the DUE and BSs in the available set
%7:" can be determined. To initialize the inner environment for each outer epoch, a ran-
dom available BS will be selected form set %‘72" (line 7). Furthermore, the actor of TD3
agent selects the inner action a;. After executing the noised inner action, the TD3 agent
can observe the next inner state §;,; from the inner environment and then calculate the
immediate reward t j (line 10). Transitions of the inner MDP will be stored into the inner
replay buffer, i.e., (8 o a s S it r J-) - R (Line 11). After at least Np times of interaction
between the TD3 agent and the inner environment, a mini-batch of N p transitions will be
sampled from R to train the twin critic, via gradient descent method in (3.21) (line 12).
For every N, times of training the twin critic networks, the actor network will be trained
as per gradient ascent approach in (3.26), and the target twin critic and the target actor net-

works will be updated following Polyak averaging rule (line 13). After the evaluation and
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training of the TD3 agent, the selected outer action a; will be conducted and the next outer
state s;, | can be observed from the outer environment, then the immediate outer reward r;
can be derived (line 15). Furthermore, transitions of the outer MDP will be stored into the
outer replay buffer R, i.e., (s;,a;,s;,, ;) = R (line 16). When at least N 5 transitions are
recorded into R, a mini-batch of N transitions will be randomly sampled from R, which
will be utilized to train the online D3QN network (line 17). For every Y5 steps, the target

D3QN network will be updated to the online D3QN network via letting 67, = 03 (line

2

18). For each training episode, the exploration parameter € and Normal noise variance o,

will be annealed by their respective decaying rates to deal with the dilemma of exploration

and exploitation (line 20).
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Fig. 3.6 Workflow of the hybrid D3QN-TD3 solution
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Algorithm 3.1: The proposed hybrid D3QN-TD3 solution

1 Initialization: Initialize randomly the D3QN network Q p3(s, a|@p3) and its
target network Q p3(s, a|053), with 953 < Op;. Initialize randomly the TD3
network, including the actor network u(s|@ M), the twin critic networks
Op(s,al0 Pj), the target actor network 4(s|6),) and the twin target critic

networks Q p(s, a|0p,), with 0, < 6, and 67, < 0 Py Initialize the D3QN
J J

replay buffer R with capacity D and the TD3 replay buffer R with capacity D;
2 for episode = [1, epi] do

3

5

6

10

11
12

13

14
15

16
17

18

19
20
21 end

Initialize the outer environment and reset the UAV’s location to g,(0);
4 fori =[1,epo

ouler] do
Observe the outer state s;;

Select the outer action a;, observe the available set 9§2i and the occupied
set B

Randomly select a BS b € 9§:’ and check the corresponding type of
pathloss, i.e., LoS or NLoS, then initialize the inner environment;

for j = [1, epo;,,..1 do

Observe the inner state § It

Select and execute the inner action a s then observe the next inner
state §;, | and calculate the corresponding inner reward f;;

Store transition (§j, ﬁj, §j+1, f'j) into R; A

Sample a mini-batch of Np transitions from R, then update the twin
critic networks Q p(s, a|@ P;) via gradient descent method in (3.21);

Every N, times the twin critics are trained, update the actor
network p(s|60),) via gradient ascent approach in (3.26), and update
the target networks Q p(s, a|60}.) and u(s|6))), following the Polyak

J

averaging rule in (3.27) and (3.28), respectively;

end

Execute the outer action a;, then observe the next outer state s, ; and
calculate the outer reward r;;

Store transition (s;, a;,S;,, ;) into R;

Sample a mini-batch of N p; transitions from R, then update the D3QN
network O ps(s, a|@ps3) via gradient descent method in (3.16);

Update the D3QN target network Q p3(s, a|07,;) every Yp; steps, i.e.,
b3 < Op3;

end
2 2 .
Update € < € X dec, and 63, < o5 X dec,;
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Complexity Analysis and Justification of the Proposed D3QN-TD3 Algorithm
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Fig. 3.7 An example illustrating offline exploitation of hybrid D3QN-TD3 solution

The proposed D3QN-TD3 method is genuinely an online-centralized-learning-and-
offline-decentralized-execution algorithm, for realizing its efficient implementation with-
out introducing heavy burden of computations or unbearable delays and overheads of in-
formation transferring, e.g., imperfect CSIs and designed beamforming vectors between
the C2 and available BSs, during its exploitation for radio resource management. Specif-
ically, the proposed DRL-enabled algorithm is trained in a manner of online and central-
ized learning, aided by stochastic gradient descent/ascent with back-propagation, while
interacting with outer and inner environments. Then, within the phase of offline ex-
ploitation, the trained D3QN agent would remain centralized at the C2, while the trained
TD3 agent would be copied and distributed to be implanted to all the involved BSs, in-
spired by distributed ML frameworks, e.g., federated learning (FL) [132-134]. The C2
would select the optimal RB index for DUE after observing the current RBP map, with
the help of trained D3QN agent. Furthermore, according to Subsection 3.2.1, available
BSs would be appointed by the C2, after which these available BSs would activate their

TD3 agents to perform transmit beamforming. Therefore, D3QN and TD3 components
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carry out a two-step optimization process of RB coordination and beamforming design,
via forward-propagations of the observed RBP map and local imperfect CSI, respectively.
It is well known that, for feedforward neural networks, forward-propagation is much less
computation-hungry than parameter update with back-propagation. For ease of interpret-
ing, Fig. 3.7 shows an example of appointed available BSs, potential BSs, current occupied
BSs and the corresponding B2D downlink transmissions, for selected RB index by the C2.

During the online training phase, overheads rooted in interactions between the pro-
posed D3QN-TD3 method and the environments as well as errors introduced by informa-
tion observing and sharing would be another main source of concern. The outer reward
function (3.15) and inner reward function (3.20) are designed to have nothing to do with
extra environment information, e.g., CSIs and beamforming vectors of occupied BSs and
AWGN variance, but focus on introducing more available BSs and optimizing beamform-
ing performance of the selected available BS, respectively. These setups of reward func-
tions significantly reduce overheads of information acquisitions during online training,
while the aforementioned extra environment information is only used for calculating EOD
for numerical results during offline execution. As the RBP map is genuinely a 2D binary
matrix, it is assumed that the D3QN agent can observe it without errors or delays. Regard-
ing the accuracy of available BS’s CSI, estimation error has been modelled in (3.5), for
enhancing modelling practicality and highlighting the motivation of applying DRL-aided
beamforming design. Thanks to the presence of experience replay buffer, both D3QN and
TD3 are trained as per sampled mini-batch data out of their respective experience replay
buffer, which means that their online trainings are off-policy and they could learn pat-
terns of outer and inner environments from past experiences. Therefore, the TD3 agent
is steered to select one single BS from current set of available BSs, for relieving issues of
overheads and delays of CSI estimation and transfer during online learning stage. Though
each time TD3 agent interacts with only one available BS, with the help of experience re-
play buffer, TD3 agent can still be trained to learn patterns of the inner environment with

sufficient amount of stored transitions.



Table 3.1 Simulation parameter settings

Parameters | Values | Parameters | Values
Capacities of replay buffers D/D 100,000/100,000 || Given TOP threshold I}, 0dB
Number of episodes epi 100 Capacity of & 37
Number of outer epochs epo,,;., 22 Capacity of & 100
Number of inner epochs epo,,,,,, 200 Transmit power of each BS P 15 dBm
Target network update frequency Yp3 500 Number of antennas at each BS M 8

Initial exploration parameter 6/612, 0.9/1 Tier of ICI p 1
Exploration annealing rate dec,/dec, 0.93/0.91 Power of AWGN o2 -90 dBm
Size of mini-batch N p3/Np 128/128 Carrier frequency f, 2 GHz
Polyak interpolation factor 7 0.00005 DUE’s Altitude A/BS’s antenna height z | 100 m/25 m
Learning rates aps/ap /ap, 0.001/0.002/0.001 || SINR measurements ¢ 1000
Discount factor y 0.99 Duration of time slot §,, 1.82s
Nakagami shape factor m for LoS/NLoS | 3/1 Imperfect B2D CSI correlation factor p 0.75
Policy update delay factor N, 2 Prior-activation penalty coefficient ¥ 1
Absolute saturation value of Tanh & 2.5 Size of CNN’s kernel k{/k3/kS 5/4/3
Number of CNN’s filter f{/f5/f5 32/32/32 Size of CNN’s stride s7/s5/s5 1/1/1

91T | wyLod[y pasodoid oYL "¢'¢
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3.4 Simulation Results

In this section, numerical results will be provided to evaluate the performance of the pro-
posed hybrid D3QN-TD3 solution. An urban subregion specified by [0, 3]x[0, 3]%[0, 0.1]
(in km) 1s focused, in which local building distribution is generated via one realization of
ITU statistical model as shown in Fig. 3.3. The parameter setting of this statistical model
is in line with Subsection 3.2.2. Note that the generated building distribution remains
stable and unchanged for the entire simulation process, which consents with the practi-
cal scenario in real life. In the considered model, the DUE’s location at each time slot is
observed to determine the LoS/NLoS links via checking potential blockages between the
DUE and the BSs. Note that there are up to 264" 4(#)*card(E) yarjants of the RBP map,
which cannot be traversed in simulation or even in practice, due to its Exponential expan-
sion. To generate repetitive simulation results, the total RBP variants are assumed to equal
to the amount of time slots and these RBP variants form the pool of RBP map. For each
interaction between the D3QN agent and the outer environment, the RBP map can only
vary randomly in the range of RBP pool.!# Tt is a reasonable assumption because these
RBP variants can be recognized as the most likely experienced cases in the considered
cellular network, and the remaining RBP variants are ignored for their rareness.

For ease of implementation and due to the trajectory-independent nature of formulated
radio resource management problem (3.14), the DUE’s initial location and destination are

fixed at g,(I)=(1,1,0.1) km and g,(D)= (2,2, 0.1) km, respectively. The given trajectory

is defined as the line between g,,(1) and g, (D), of which the length is \/ g,(D) — q,(I)]||?>~
1.4 km. Besides, the velocity of DUE is set as V,,=35 m/s and hence the DUE will spend

T,,=40 s to travel between ¢,(I) and g,(D). Nakagami-m fading]5 is taken as an example

14Please note that no matter how large the RBP pool is, the D3QN agent of proposed solution can still
be trained to reach a satisfactory learning performance, but the training time cost will inevitably become
heavier, i.e., more outer epochs will be involved and more learning episodes are needed.

5In contrast to terrestrial communication scenarios where Rayleigh fading is widely applied to model
small-scale fading, Rician [135, 136] or Nakagami-m [137] fading is more suitable to track the characteristics
of B2D small-scale fading when LoS pathloss is experienced. For Nakagami-m fading model, special case
m = 1 is equivalent to Rayleigh fading while the case with m > 1 can be utilized as an alternative of Rician
fading where m reflects the strength of LoS component.
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to model the small-scale fading component for B2D channels in this chapter. Besides,
the popularly used Rayleigh fading [119, 138] is applied to model the terrestrial small-
scale fading component and the beamforming vector for terrestrial transmission is set as
L_ébg = ;’Zg/ | |7lbg| | for simplicity.16 Unless otherwise mentioned, the simulation parameter

setting is in accordance with Table 3.1.

3.4.1 Construction of DNNs

The proposed hybrid D3QN-TD?3 solution is implemented on Python 3.8 with TensorFlow
2.3.1 and Keras. The optimizer minimizing the mean square error (MSE) for all the ap-
plied DNNs is Adam with fixed learning rate. The activation function at each hidden layer
(including each convolutional layer of CNN) is ReLU function, for its simplicity and gen-
erality. Besides, the activation function utilized for both output layers in D3QN and critic
network of TD3 is Linear, while that for actor network of TD3 is Tanh.!”

The DNN of D3QN agent is constructed with fully connected feedforward ANN, in
which 3 hidden layers contain 512, 256 and 128 neurons, respectively. The shapes of
CNN’s input and output layer of D3QN are determined by the dimension of RBP map and
the number of possible RBs, i.e., card(9%) X card(K') and card(K'), respectively. Before
the output layer and after the last hidden layer, there is a duelling layer with card (%) +
1 neurons, where one neuron reflects the estimation of state-value and the remaining
card(#') neurons track the action advantages for the card(%#’) possible actions. After
aggregation, the output layer generates the estimation of the card (%) state-action values,
as depicted in Fig. 3.4.

Both the twin critic and actor networks” DNNs in TD3 agent are fully connected feed-

forward ANNs with 3 hidden layers consisting of 512, 256 and 128 neurons. The dimen-

16This chapter focuses on the interference management for cellular-connected UAV networks and the
precoding configuration regarding terrestrial transmissions is not interested. Here, it is assumed that the
occupied BSs simply perform MRT technique for their serving GUEs.

70n the contrary to other popular activation functions, inter alia, ReLU, Softmax or Sigmoid, Tanh does
not lose the degree of freedom to output both positive and negative values, which is of essence for the
design of beamforming vector. Besides, the output of Tanh is bounded within the range of (-1,1), which
may enhance stability and robustness of training process.
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sions of input layer and output layer of the twin critic networks correspond to 2M + M +
2M and 1, while those of the actor network are 2M + M and 2M, respectively. This
is because the Nakagami-m fading component is in form of complex value, which should
be decoupled at the input layers of the critic and actor networks. Besides, M additional
neurons should be added into the input layers of the critic and actor networks to help them
identify LoS/NLoS inner environment. To calculate the inner reward function (3.20), the
actor network’s outputs will be reconstructed into complex-value vector with M X 1 di-
mension, after which the vector will be normalized to satisfy constraint (3.14c).
Although activation function 7anh is popular and effective, it may suffer from satura-
tion. As depicted in Fig. 3.8, when the input of 7anh locates in the left (right) saturation
region, the corresponding output will unreasonably approach -1 (1), raising gradient van-
ishing issue amid back-propagation of the training process [139]. To tackle this problem,
prior-activation penalty will be posed onto the actor network’s loss function, which can
direct the input of 7Tanh to remain in the range of unsaturation area. In implementation,
gradient ascent on actor’s expected return (3.26) is accomplished via inverse batch gradi-

ent descent on the estimated Q function of critic 1 network, given by
0,t+1)=0,x1) - aPaVGMloss(Oﬂ), (3.29)

where the mean loss function of actor network is denoted as

Np
1 N A
1055(0,) = == D, p [$, 4(5,16,)165 | (330)
P =1

Then, to perform prior-activation penalty trick, the mean loss function of actor network

(3.30) is rewritten as

Np
1 N o
loss(eﬂ) =N— 2 {—Qp [S;,#(Sz|9y)|9Pl] +
P =]
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2M 2M 2

1 1
k | max m;om—g,o + max —m;onm—g,o . (331

where k indicates the coefficient of prior-activation penalty, £ represents the absolute sat-
uration value of Tanh activation function, and ¢, ,, denotes the prior-activation value of the
corresponding neuron m = {1,2,---,2M } over one time of sampling ¢ from mini-batch
transitions. The actor is trained to minimize (3.31), which can directly navigate the prior-
activation values of actor’s output neurons to remain in the unsaturation region and thus

helping circumvent the issue of gradient vanishing caused by saturation.
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Fig. 3.8 An illustration of Tanh activation function’s saturation and gradient vanishing

3.4.2 Training of Hybrid D3QN-TD3 Algorithm

Fig. 3.9 shows reward history curves versus training episodes for the proposed hybrid
D3QN-TD3 solution. The average reward reflects the expected value of epoch rewards
for each episode, which is calculated via averaging accumulated rewards over training
epochs. It can be observed from Fig. 3.9 that both D3QN and TD3 networks illustrate
increasing trending of average reward alongside the training process, though experiencing
some fluctuations that are usual phenomena in the regime of DRL-related algorithms.
Specifically, the D3QN’s average reward converges to the optimum (around 0.57) after 70

training episodes, while the TD3 converges to its highest average reward (about 0.51) after
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40 training episodes. Fig. 3.9a validates that the D3QN agent can adapt to the dynamic
RBP environment via allocating proper RB index to the DUE for each time slot, while
Fig. 3.9b verifies that the TD3 agent is able to adjust transmit beamforming vectors to
fit the small-scale fading environment. After saving the hybrid D3QN-TD3 model with
the highest average rewards, it can be re-loaded to realize EOD performance comparison

which will be illustrated in Subsection 3.4.4.

3.4.3 Impacts of Hyper-parameters

It is well known that the overall performance of DRL-related algorithms is sensitive to
hyper-parameters, e.g., target network update and learning rate. The hyper-parameters
should be picked carefully for given system settings, to realize satisfactory learning quality
and convergence speed.

Fig. 3.10a delivers average D3QN reward curves versus training episodes with various
ap3, while Fig. 3.11a demonstrates average TD3 reward curves versus training episodes
with different combinations of ap, and ap.. From these figures, it can be observed that
learning rates pose significant impacts on learning performance and convergence speed.
With relatively high ap;, i.e., ap; = {0.1,0.01}, although the D3QN’s convergences are
quite rapid, it reaches extremely unsatisfactory learning scores (both around 0.3). With
relatively small aps, 1.e., ap; = {0.001,0.0001}, the D3QN agent can achieve higher
scores (about 0.57 and 0.54, respectively). Surprisingly, when a3 is extremely small,
1.e., ap3 = 0.000001, it leads to unsatisfactory learning performance in the range of 100
training episodes. However, ap; = 0.000001 may have the potential to help the D3QN
agent reach a new highest score, for which the price is that much more training episodes are
needed (i.e., less favourable convergence rate). For Fig. 3.11a, learning rate combination
[ap, = 0.001, ap, = 0.002] is selected as the anchor for comparison, which can converge
to its optimal score (around 0.51) after about 40 training episodes. With higher ap,, i.e.,
[ap, = 0.01,ap. = 0.002], the TD3 agent barely learns anything and achieves signifi-

cantly worse score (around 0.06). With smaller ap,, i.e., [ap, = 0.0001, ap. = 0.002],
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the TD3 agent converges to a worse score (about 0.38) than the anchor, after around 60
training episodes, which means that it experiences slower convergence rate. With higher
ap., 1.e., [ap, = 0.001,ap, = 0.02], the TD3 agent converges to worse learning quality
(around 0.18), although the corresponding convergence speed is relatively rapid. With
smaller ap,, i.e., [ap, = 0.001, ap, = 0.0002], the TD3 agent can only reach much lower
learning score (around 0.37), while experiencing a comparable convergence speed (con-
verging after around 40 training episodes). From the above observations, it is straightfor-
ward to conclude that the proposed hybrid D3QN-TD3 solution is unsurprisingly sensitive
to learning rate which should be selected delicately for accomplishing a good trade-off be-
tween learning quality and convergence speed.

Fig. 3.10b depicts average D3QN reward curves versus training episodes with differ-
ent Yps3, while Fig. 3.11b illustrates average TD3 reward curves versus training episodes
with various 7. From these figures, it can be easily concluded that target network tech-
nique adopted in the proposed hybrid D3QN-TD3 algorithm is undoubtedly of essence.
Specifically, less frequent updating (i.e., larger Yp3) on D3QN’s target network can help
the D3QN agent achieve better learning scores, while less amount of updating (i.e., smaller
7) on TD3’s target networks is more favourable. However, larger Y3 and smaller = may
result in slower convergence speed. Hence, the picking of Y5 and 7 is important for the
proposed hybrid D3QN-TD3 solution to deal with the dilemma between learning perfor-

mance and convergence speed.

3.4.4 Performance Comparison

After online centralized training, performance comparison between representative base-
lines and the trained D3QN-TD3 solution can be conducted within the offline decentral-
ized exploitation phase, where the following benchmarks are provided. 1) RR w/o BD: the
RB index selected for each time slot and the beamforming vector at each available BS are
both randomly generated. Note that this approach is supposed to be the worst, which may

lead the DUE to suffer from the maximal transmission outage duration. 2) RR w/ BD: the



3.4. Simulation Results | 126

EOD (seconds)

EOD (seconds)

40 1 \\
35
30
25
20
157 —=— RRw/0 BD
—8— RR w/BD
10 1 —4— RR w/ MRT
—— Hybrid D3QN-TD3
5+ =—@— ER w/BD
—4— ER w/ MRT
-30 -20 -10 0 10 20

P (dBm)

(a) Performance comparison versus P

w
o
1

N
wu
1

N
o
1

=
u
1

/7

—= —— ——

—a

RR w/o BD

RR w/ BD

RR w/ MRT
Hybrid D3QN-TD3
ER w/ BD

ER w/ MRT

thited

5 6 7 8 9 10 11 12

(b) Performance comparison versus M

Fig. 3.12 Performance comparison




3.4. Simulation Results | 127

RB index scheduled for each time slot is randomly selected, but the beamforming vectors
at available BSs are generated with the help of trained TD3 agent. 3) RR w/ MRT: difterent
from RR w/ BD, MRT technique is invoked to generate the beamforming vectors, based
on the corresponding estimated CSIs. 4) ER w/ BD: the RB index assigned for each time
slot is the optimal via exhaustive search method, which can maximize (3.15) for every
observed RBP map. Besides, the beamforming vector at each available BS is obtained
from the trained TD3 agent. Note that this benchmark serves as the lower bound of EOD
performance, which is supposed to help the DUE suffer the minimal transmission outage
duration. 5) ER w/ MRT: different from ER w/ BD, the beamforming vectors are designed
with the help of MRT technique, based on the corresponding estimated CSIs.

The proposed hybrid D3QN-TD3 solution provides the proper RB index for each time
slot and designed beamforming vector for each available BS, with the aid of trained D3QN
agent and TD3 agent, respectively. Fig. 3.12a and Fig. 3.12b show EOD curves of the
proposed D3QN-TD3 solution and benchmarks versus P and M, respectively. It is clearly
illustrated in Fig. 3.12a that the EOD curves decrease dramatically with the increase of P,
which means that higher P can help the DUE achieve better transmission outage perfor-
mance (i.e., lower EOD). Comparing the EOD curves of RR w/o BD and RR w/ BD, EOD
performance enhancement can be observed (especially, for P € [—10,20] dBm), which
validates the effectiveness of TD3 component. Furthermore, via comparing the curves
of RR w/ BD and RR w/ MRT, one can observe that the trained TD3 agent can help the
UAV suffer from less amount of EOD than MRT beamforming scheme (for P € [—-10, 20]
dBm), in case of imperfect CSI estimation. Similar phenomenon can be observed via com-
paring ER w/BD and ER w/ MRT. This is because the MRT beamforming strategy can only
adapt to the estimated CSI, while the TD3 agent is trained to adapt to the overall imperfect
CSI. Besides, greater EOD performance improvement can be achieved with the help of
D3QN component, via comparing the EOD curves of RR w/ BD and the proposed hybrid
D3QN-TD3 solution (especially, for P € [—-20,20] dBm). The aforementioned observa-

tions validate that the D3QN and TD3 agents are able to offer independent EOD perfor-
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mance gains, which is a remarkable feature of the proposed hybrid D3QN-TD3 solution.
Compared to the optimal method ER w/ BD, the proposed hybrid D3QN-TD3 solution
can help the DUE achieve sub-optimal EOD performance which performs slightly worse
than the optimal approach but can provide significant EOD reduction than benchmarks
RR w/o BD, RR w/ BD and RR w/ MRT. Most importantly, the proposed hybrid D3QN-
TD3 solution outperforms ER w/ MRT as well, which means that the joint RB allocation
and beamforming design provided by the proposed hybrid D3QN-TD3 solution can offer
more significant EOD reduction than that offered by MRT beamforming with optimal RB
allocation. Similar conclusions can be drawn from Fig. 3.12b which demonstrates EOD
curves versus various M. Note that for specific antenna number configuration, the pro-
posed hybrid D3QN-TD3 algorithm needs to be retrained with the corresponding antenna
number.'® From this figure, one can find the other fact that increasing M can help en-
hance EOD performance for solutions with beamforming design (RR w/ BD, RR w/ MRT,
Hybrid D3QN-TD3, ER w/ BD and ER w/ MRT), but cannot achieve any EOD reduction

for solution without beamforming design (RR w/o BD).

3.5 Chapter Summary

This chapter studied a joint RB allocation and beamforming design optimization prob-
lem in cellular-connected UAV network while protecting GUEs’ transmission quality, in
which the EOD of DUE was minimized via the proposed hybrid D3QN-TD3 algorithm.
Specifically, the D3QN and TD3 agents were trained to accomplish the RB allocation in
discrete action domain and beamforming design in continuous action regime, respectively.
To realize this, an outer MDP was defined to characterize the dynamic RBP environment
at the terrestrial BSs, while the inner MDP was formulated to trace the time-varying fea-
ture of B2D small-scale fading. The hybrid D3QN-TD3 solution was proposed to solve

the outer MDP and the inner MDP interactively so that sub-optimal EOD performance

18The robustness of TD3 agent to various antenna number configuration can be further enhanced via
adopting hypernetwork [140], meta-learning [141] and/or transfer learning [142], which is left as future
work and is envisioned to relieve the retraining burden or even liberate the TD3 agent from being retrained.
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for the considered optimization problem can be achieved. Numerical results illustrated
that the proposed hybrid D3QN-TD3 solution can significantly reduce EOD for the DUE
and achieve sub-optimal EOD performance, compared to the provided benchmarks. Most
importantly, the trained D3QN and TD3 agents were also validated to offer independent

improvements on EOD performance.



Chapter 4

Intelligent Trajectory Planning in
UAV-Mounted Wireless Networks: A
Quantum-Inspired Reinforcement

Learning Perspective

4.1 Introduction

Balancing exploration and exploitation remains the inherent challenge of RL-based intel-
ligent systems, which poses significant impacts on learning efficiency and quality, e.g.,
e-greedy and Boltzmann action selection strategies [98, 106, 143]. On one hand, e-greedy
method renders that a random action is executed with probability € € [0, 1], and the opti-
mal action is selected with probability (1 — €) according to the developed action selection
policy. This method is simple and effective. However, one of its drawbacks is that it
selects uniformly among all possible actions while exploring, which means that it cannot
distinguish the next-to-optimal action from other possible counterparts. On the other hand,
Boltzmann (or the Softmax) exploration method introduces an action selection probability

exp(O(s, a)/r)/(zi exp(Q(s, ai)/r)) based on the Q function Q(s, a) of state s and action
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a, where the parameter 7 represents the temperature in the Boltzmann distribution. How-
ever, finding a good 7 which can properly balance exploration and exploitation is difficult.
The parameters € and 7 pose significant impacts on the convergence performance and
the quality of learning output, which makes it necessary to develop new action selection
strategy for conventional RL. (CRL).

In this chapter, a novel RL algorithm inspired by quantum mechanism, which is in-
dependent on exploration parameters, is applied to tackle the trajectory planning problem
in UAV-aided uplink transmission scenario. Specifically, in this proposed QiRL solution,
balancing exploration and exploitation is realized in a manner inspired by the collapse
phenomenon of quantum superposition and the quantum amplitude amplification.” Dif-
ferent from [98] and [99], the quantum explanation of QiRL from fixed rotation angles is
extended to their flexible counterparts in this chapter, which is an alternative of [106] and
[100]. Besides, the limitation of linear function mapping in [106] and that of empirical
rotation angle setting in [100] are further relaxed. This chapter aims at providing the first
exploration of emerging QiRL for UAV-aided wireless networks.

Chapter organization: Section 4.2 presents the system model. Section 4.3 formulates
the considered optimization goal. Section 4.4 shows the proposed QiRL solution. Simu-

lation results are presented in Section 4.5 and chapter summary is drawn in Section 4.6.

4.2 System Model

This chapter concentrates on the uplink transmission scenario consisting of one UAV? and
K GUEs, in which the location of each ground user is denoted as ijG = (x4, x> 0) where

ke {1,2,...,K}. It is assumed that all the GUEs are uploading their messages in a fre-

"The abbreviation “CRL” denotes the RL methods without involving neural networks, distinguishing
itself from DRL.

’In QRL, it is expected to implement real quantum computation on practical quantum computers, while
QiRL algorithm invokes several ideas from quantum theory and is still in the frame of CRL which can be
directly conducted on traditional computers.

3Without loss of generality, the system model with one single UAV is focused, while the proposed QiRL
algorithm can be similarly applied to other UAVs. The multi-UAV scenario is of importance to be evaluated,
which is out of the scope of this chapter and left as one of future research directions.
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quency division multiplexing manner. Thus, each GUE transmits sorely on its assigned
channel and inner-channel interference can be approximately ignored. Besides, the UAV
is assumed to fly with constant velocity V' (m/s) and fixed altitude H (m).4 A practical
assumption on the availability of network information is applied, in which the UAV can-
not obtain any environment knowledge, e.g., transmit power of the GUEs, locations of
the GUEs, and can only observe raw signals from GUEs.”> The goal of the UAV is to
maximize the expected sum uplink transmit rate (ESUTR) of the GUEs via intelligently
adjusting its flying trajectory from the start location g, = (xg, yy, H) to the destination
dr = (xp,yp, H). Assume that the feasible region where the UAV can explore is a rect-
angular area [xo, X F] X [yo, y F] , denoted as @ for clarity. To make the trajectory design
tractable, the entire trajectory is discretized into F equal-spacing steps, via evenly quanti-
fying the time horizon into F time slots, where the length of each time slot is predefined
as T (s). Furthermore, the 3D Cartesian coordinate at the beginning of each time slot can
be given by & = {gy. q), ..., qF}, in which gy < g, < gr,Vf €0, F].

The large-scale pathloss model on the sub-6 GHz band [144] is considered to charac-
terize the channel gains for wireless links between the UAV and all GUEs, which can be
given by PLfk(dB) =20 lg(dfk) + 20 1g(w) — 147.55, where dep = ||c7f — 67,?” denotes
the Euclidean distance between the UAV at sampled location ¢ ¢ and the GUE k, and w
represents the carrier frequency. Note that herein LoS-dominated channel gain is taken as
an example to evaluate the proposed system model, which is suitable for suburban or rural
scenario, i.e., the channel gain between the drone and GUEs can be characterized by the
distance-based fading channel model.®

The received SNR at the UAV from GUE k can be derived as Iy, = Pk/(ai 10PLri/10),

where P, represents the uplink transmit power of GUE k and ai denotes power of AWGN.

“The UAV’s altitude H is assumed as a fixed parameter, which may correspond to the lowest altitude
required for terrain or building avoidance, under the regulation of local laws in practice.

SThe UAV can measure its received raw signals via existing communication protocols, e.g., RSRP and
RSRQ measurements [36].

SThis chapter focuses on strong LoS pathloss channel model and the effects of small-scale fading (e.g.,
Rician fading or Nakagami-m fading) is omitted. Besides, NLoS channel gain can also be easily integrated
into the proposed model via involving extra NLoS fading component, which means the proposed algorithm
is still applicable for NLoS case and this case is omitted for conciseness.
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4.3 Problem Formulation

This chapter focuses on maximizing the ESUTR for the UAV travelling from the prede-
fined start location to the destination, via finding its optimal trajectory. It is straightforward
to conclude that, at each sampled UAV coordinate 12 the sum uplink transmission rate
can be characterized by Y&_, b, log (1+4Ty;) where b, means the bandwidth occupied by

the GUE k. Furthermore, the problem of ESUTR maximization can be stated as

F K
m;x%j;”;bklog(l +T), (4.1a)
st lgy —qrall =VT, (4.1b)
Go <dr = qr, (4.1c)
FT < E, (4.1d)
D b < B, (4.1e)

k

where B indicates bandwidth capacity of the system and E represents the maximum flight

time threshold. Note that the constraint (4.1b) ensures that the flying distance between
arbitrary adjacent time slots is fixed as the UAV’s roaming capacity V' T'; the constraint
(4.1c) makes sure that the UAV’s trajectory is exclusively within the feasible regime; the
constraint (4.1d) declares that the maximum exploration time FT is constrained by the
on-board power capacity of the UAV; and the constraint (4.1e) limits that the sum of each
GUE’s occupied bandwidth should lie in the range of available bandwidth resource.

The proposed problem (4.1) cannot be tackled via traditional optimization approaches
due to the lack of environment information but can be solved by model-free RL algo-
rithms in a trial-and-error manner, e.g., Q-learning. However, CRL with tuned explo-
ration parameters, e.g., hyper-parameters € and 7, may suffer from difficulty of balancing
exploration and exploitation, which can further affect its learning quality and convergence
performance. To give a better alternative for solving problem (4.1), the QiRL technique

will be invoked to tackle the proposed optimal trajectory planning problem.
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4.4 QiRL Solution

The above trajectory design problem can be interpreted as a sequential decision-making
process following Markov property, which means that the UAV’s movement decision for
the current time slot can be sorely determined according to the information of the previous
time slot, regardless those of time slots before the previous time slot. Therefore, MDP is
a suitable candidate for solving the trajectory optimization problem, forging the optimal
mapping, i.e., the optimal action selection policy, from the state space to the corresponding

action selections.

4.4.1 The MDP Formulation

To formulate the MDP, it is needed to clarify the states of the proposed QiRL solution for
the considered scenario. The feasible area @ is divided into N; by N, small grids and
the side length of each grid equals V'T'. Besides, it is assumed that the sum of received
signal strength keeps constant within each grid.” The GUEs are located in some of the
small squares, which will be specified in the numerical results. According to the discrete
tabular form of ®, the state set of the UAV can be written as &' = {s1,55,...,5y,n, }»
where s; € & represents a small square in ®. Because this chapter focuses on the ESUTR
maximization problem, it is straightforward to define R(s;) = Zszl by log(l + Fs,~k> as
the reward function for state s; (also denoting R(s;) as R for simplicity), where Jsi in T
denotes the location of s;. In the case of reaching the boundary of ¥, the UAV will be
rebounded back and the reward for this trial is set to zero.® Note that the UAV is only
able to observe R while other network information is inaccessible, i.e., Py, by, 0',% and c?]g’ .
The UAV aims to find an optimal path, in which the ESUTR of the GUEs should be the
greatest among all possible UAV roaming routes from g, to g. To drive the UAV to the

destination g, the UAV will gain a special reward which is defined as R= 1OXma§R(si),
5;€

"This assumption is reasonable because the acreage of each grid is far less than that of ®, in the case of
sufficient discretization.

8Hereby, zero reward for crashing into the boundary is taken as an example. Of course, one can let this
kind of scenario be punished by minus reward.
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once it reaches g. Regarding the UAV’s possible actions, the movement options of the
UAV are limited in the following action set & = {forward, backward, left, right}, which
will be denoted as quantum eigenactions in the proposed QiRL solution. The goal of the
proposed QiRL algorithm is to learn a mapping from states to actions, i.e., the UAV aims
to learn a policy 7 : X — [0, 1] so that the expected sum of discounted rewards for each
episode can be maximized. The value function of state s at trial 7 is defined as V, (s) =
E, [Zf:o y’ Rt+I1+1)|S@) = s], where y represents the discount factor. Furthermore,
the TD-based value updating rule [99] of the proposed QiRL can be described as V' (s) «
Vis)+a [R (s') +yV (s’) -V (s)] , where s’ means the next state after taking an action

and «a indicates the learning rate.

4.4.2 Collapsing Action Selection

According to quantum mechanics [145], a quantum state |¥) (Dirac representation) can
describe the state of a closed quantum system, which is a unit vector (i.e., (¥|¥) = 1) in

Hilbert space. The quantum state |¥) consisting of n qubits’ can be expanded as

n
—_——

11...1
) =y @) ® -~ ®|w)= Y hlp). 4.2)

p=00...0
where |1//l~) ,i € [1, n] represents the i-th qubit which is a two-state quantum system and the
basic unit of quantum information, the complex coefficient &, (subject to 211)1:'(‘)‘5.“0 |h p|2 =
1) denotes the probability amplitude for eigenstate |p) of |¥) and @ represents the ten-
sor product. The representation of n-qubit quantum state |¥) follows the quantum phe-
nomenon called state superposition principle. Note that h, can take 2" complex values so
that the n-qubit quantum state |¥) can be regarded as the superposition of 2" eigenstates,

in the range from |00...0) to |11...1).

%A qubit can be realized by a two-state system, e.g., 1) a two-level atom, in which |0) denotes the ground
state and |1) indicates the excited state; 2) a photon, where |0) represents the horizontal polarization state
and |1) means the vertical polarization state; or 3) a spin system, in which the states of spin up and spin
down are described by |0) and |1), respectively.
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To represent the four possible actions in QiRL, two qubits are sufficient. Furthermore,

eigenactions, i.e., the quantum representations of physical actions |a1) s lan) . |as), |a4),

are allocated to denote the actions forward, backward, left and right, respectively. Inspired
by the superposition principle of quantum theory, the four egienactions can be represented
in their quantum superposition form, given by |A(/)) = |1//1) ® |1//2> = Zy:oo h,la) —
Zizl h, |an), where [ represents a specific trial and the complex coefficients 4, and h,
are the probability amplitudes under the normalisation constraints Zizl |h, > =1 and
Zilzoo |h, |> =1, respectively. Note that the two-qubit superposition | A(/)) is a unit vector
in a 4-dimensional Hilbert space spanned by the four orthogonal bases |00), |01), |10) and
|11). Specifically, the action taken by the UAV before any quantum measurement lies in a

superposition state (four options in total, i.e.,

a), |a2), |a3) and |a4)), which is mapped
into the tensor product of two qubits.

In quantum theory, when an external agency, e.g., experimenter, measures the quantum
state W)=Y 0, |u/n) with the eigenbasis {y, }, |¥) will collapse from the superposition
state to one of its eigenstates |1//n>, ie., |¥)— |wn), with probability | (q/n|‘I’) |2=|on|2.
Inspired by this quantum collapse phenomenon, the superposition |A(/)) is supposed to

collapse onto one of its eigenactions |an) with probability of |A,, |2, during action picking

in the proposed QiRL algorithm.

4.4.3 Grover Iteration

The quantum representation | A(/)) establishes a bridge between quantum eigenactions and
the physical action set &, which allows us to apply quantum amplitude amplification as
a reinforcement strategy. The probability amplitude of each eigenaction can be ampli-
fied or attenuated via specific quantum algorithm, e.g., Grover’s iteration [145], gradually
modifying the probability distribution of collapsing. To realize this, two unitary oper-
ators can be employed for the currently chosen action |a,-) which is from the /-th trial

JAWD)) = Yoy By |an) = hy |a;) + hgt |a; ), shownas U, = I — (1 - e/*)|a;) (a;] and

i h
Ujaay = (1—e/%2) |A(D)) (A()|-1I, where |af‘> = Zn# ﬁ a, ) means the vector orthog-
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onal to |al~), hail =/ L 1> = m, I represents the identity matrix, and (an|
and (A(/)| are Hermitian transposes of |an) and | A(l)), respectively. Then, the Grover op-
erator can be constructed as unitary transformation G' = U 4y, U| a,)- After m times of ap-
plying G on | A(])), the amplitude vector in the next trial becomes |A(l + 1)) = G™ |A(])) .

There are mainly two methods to deal with the aforementioned probability amplitude
updating task. One is to choose a feasible value of m with fixed parameters ¢; and ¢,
(commonly both of them equal to x); the other is to fix m = 1 with dynamic parameters
¢, and ¢,. Because the former updating approach can only modify the amplitudes in
a discrete manner, the later method is chosen in this chapter, i.e., Grover iteration with
flexible parameters ¢; and ¢,. Then, the impacts of G on the superposition representation

| A(l)) can be given by the following proposition.

Proposition 4.1. The overall effects of G with free parameters ¢, and ¢, on the superpo-
sition representation |A(l)) at the I-th trial can be expressed analytically as G |A(l)) =

(@ = &Py |a) + (@ = Dhyy | ), where @ = (1 = /%) [L = (1 = &/P)IA;[7].

Proof. The impacts of U| a;) ON |al~) and |af‘> can be given by

Ujoy la) = [T = (1 =) |a;) (a]] |a)) = €91 |a;), 4.3)
Ulgylat) = [T = =) [a) (a] |af) = a7 ). (44

respectively. Furthermore, one has
Uy [AD) = [T = (1 =) |a) (a|] IAD) = &P by |a)) + hyr |ai) . (45)

in which U| a,) Plays the role as a conditional phase shift operator in quantum computation.

At the end, one can obtain

G|A(D)) = U 4 U)q, 1AD))

= (1 - /") [hi |a;) + hg |al+)] lhj (| + 1, (aﬂl U)oy |AD) = Uy |AD)
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= (@~ eDh;a;) + (@ = Dhyt|a;), (4.6)

where @ = (1 — ¢/%2) [1—(1—€j¢‘)|hi|z]- o

Remark 4.1. The ratio between the probability amplitudes of |al~) after being acted by the
Grover operator G and before that can be expressed as A = (1 — e/®1 — &/%2) — (1 —
/P11 — e/ ¢2)|hi|2. Then, the updated occurrence probability of the selected action |a,-)

can be given by |A|2|hi|2.

Remark 4.2. For ease of understanding the effect of G, its algebraic visualization will be
depicted. In Fig. 4.1, |A(l)) is reconstructed via polar coordinates on the Bloch sphere,
shown as | A()) = e/*(cos % |a,-) +¢/? sin % |ail>) ~ Cos % |a,~) +e/? sin% |al.l>, where /¢
can be omitted because a global phase poses no observable effects [106]. Note that the
polar angle parameter 0 and the azimuthal angle variable ¢ define the unit vector | A(l))
on the Bloch sphere, as shown in Fig. 4.1. The impact of U| a;) can be understood as a
clockwise rotation around the z-axis by ¢, (the red circle) on the Bloch sphere, leading to

the rotation from | A(l)) to |A(l)’ ). Similarly, if one changes the basis from { |al~) ,

af‘) } to
{1A(D), |A(1)J‘>}, U|A(l)) makes a clockwise rotation around the new z-axis |A(l)) by ¢,
(the blue circle), which rotates |A(l)’) to |A(l + 1)). Therefore, the overall effect of G on

| A(1)) is a two-step rotation which can modify the polar angle 0, when the basis is locked

as {|al~) , af‘)}. Via controlling parameters ¢ and ¢,, it is possible to realize arbitrary
parametric rotation on the Bloch sphere, which acts as the foundation for modifying the
probability amplitudes of |A(l)). The smaller 0 is, the higher probability | A(l)) will col-
lapse to |al-) when it is measured, which inspires us to apply it as a reinforcement strategy.
The core of this reinforcement approach is to achieve a smaller 6 via manipulating ¢,

and ¢, when |a,-) is recognized as a “good” action. Otherwise, if |al-) is determined as a

“bad” action, ¢| and ¢, should be modified to enlarge 6.
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Fig. 4.1 Geometric explanation of the Grover rotation

4.4.4 The Proposed QiRL Algorithm

Remark 4.1 and Remark 4.2 give an explanation for amplitude amplification in quantum
mechanism, which can be applied as the quantum-inspired reinforcement strategy for the
proposed QiRL approach. According to Remark 4.1, it is straightforward to conclude that
|A|? should be designed to be larger than 1, if the current representation |al-) is determined
as a “good” action. Otherwise, |A|? should be manipulated to be smaller than 1. By
selecting feasible ¢ and ¢,, it is possible to manipulate the value of |A|2 in the manner as
mentioned before, which can be interpreted geometrically via Remark 4.2. For the sake to

. . . !
simulate it on a conventional computer, ek*[R+V(S )]

is used to alternatively represent the
overall effects of G on probability |A; |2, which means the updated occurrence probability

kA [RAV (s")] |h,|. If k > 0, the current action will be

of the selected action |a,-) should be e

rewarded while it will be punished if k¥ < 0. The updating amplification is controlled via

k% [R+V(s)H).1°

10The absolute value of constant hyper-parameter k should be chosen as per the environment, to avoid
over-updating issue on occurrence probability of the selected action. Then, the updating amplification is
dynamically steered by R+ V (s”) with constant k because the state values are being modified alongside the
learning process.
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Note that all the possible probability amplitudes together should be re-normalized af-
ter each implementation of amplitude amplification, which is subject to the normalization
constraint of quantum superposition. The proposed QiRL solution is concluded in Algo-

rithm 4.1, which can be conducted in conventional computers.

Remark 4.3. The quantum-inspired reinforcement strategy prioritizes all possible actions
in ranked probability sequence which is gradually updated alongside the learning pro-
cess. Thus, it can naturally balance the exploration and exploitation, in which no tuned
exploration parameter is necessary. This enhancement has the potential to help realize
faster convergence and satisfactory learning quality, which will be later illustrated in the

simulation results.

Proposition 4.2. The convergence of the proposed QiRL algorithm is guaranteed when the

. . . . : T _ : T 2
learning rate a is non-negative and satisfies 711_{20 Dk ¥ = o0 and Th_r)r;O Dl a < 0.

Proof. The proof is similar to that of Proposition 2 in [98], omitted for its simplicity. W

Algorithm 4.1: The proposed QiRL algorithm
Input: Learning parameters: a € [0, 1], y = 1; UAV informations: g, g, H, V,
T, E;
Output: The optimal policy #*=AmpMem,;
1 Initialization: ep = 0;s=¢g; V (5) =0,V s € &; AmpMem =
. 1111
defaultdict(/ambd a: [Z’ YEE Z]);
while ep < NumEp do
repeat
Pick a for s via measuring AmpMem([s];
Apply a and observe reward R and next state s’;
Update the value function as per
Vi(s)— V()+a|[R+yV (s') =V ()]
8 Apply quantum-inspired reinforcement factor e
AmpMem([s][a]. When the UAV hits the boundary or value difference
AV (s) <0, k < 0. Otherwise, k > 0;

N N M R W N

kx[R+V (s))] on

9 Re-normalize AmpMem(s] and set s « s’;
10 | until F > E/T or s’ == g;
11 ep+=1;

12 end
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4.5 Simulation Results

In this section, experimental results are evaluated for the considered UAV trajectory plan-
ning problem via the proposed QiRL solution. For comparison, two CRL methods (i.e.,
Q-learning with e-greedy and Boltzmann exploration strategies) are performed as bench-
marks. It is assumed that the feasible UAV exploration field ® is a square area with side
length 200 m, where 5 GUEs are located on the ground (denoted by the red stars). By
default, the length of each time slot is fixed as T'=2 s and the constant flying altitude and
speed of the UAV are set as H =100 m and V' =10 m/s, respectively. The area @ is divided
into 10-by-10 small grids and the side length of each grid equals V'T =20 m. The start
location and the destination are predefined at g, = (10, 190, 100) and g = (190, 10, 100),
respectively. Considering the on-board power capacity of the UAV, the total flying time
of the UAV is constrained as FT < 1800 s so that E = 1800 is set. Besides, it is assumed
that P, = 1 Watt, ai =1, w =2 GHz, B = 10 MHz and b,, = 2 MHz, in line with [22].

Fig. 4.2 shows the performance comparison of one widely used CRL approach called
Q-learning with two action selection strategies, i.e., e-greedy and Boltzmann, and the pro-
posed QiRL solution. Note that exploration parameters € and 7 of Q-learning approach
keep annealing alongside the learning progress, which controls the ratio of exploration and
exploitation and significantly affects the overall learning quality and convergence perfor-
mance. In this figure, the learned trajectories of Q-learning and QiRL are also depicted
for intuitive comparison. Specifically, Fig. 4.2a shows the expected reward curves, which
corresponds to Fig. 4.2b.

From Fig. 4.2a, it is straightforward to observe that the proposed QiRL solution can
converge much faster than Q-learning with e-greedy action selection strategy, while it
has relatively faster convergence speed than Q-learning with advanced Boltzmann action
selection strategy, which illustrates that the proposed QiRL algorithm can offer better
convergence performance. Moreover, from Fig. 4.2b and Fig. 4.2c, one can observe
that all the simulated RL approaches can output proper trajectories in these two different

network environments. However, while Boltzmann strategy can offer faster convergence
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performance than e-greedy, it leads to sub-optimal trajectory, as shown in Fig. 4.2a and
Fig. 4.2b. According to Fig. 4.2, the proposed QiRL solution can not only enhance
convergence performance but also achieve the equivalently optimal trajectory compared
to Q-learning with e-greedy action selection strategy. Note that the balancing between
exploration and exploitation in e-greedy or Boltzmann aided Q-learning approach is con-
trolled by the pickings of initial exploration parameter (i.e., € or 7, respectively) and their
corresponding annealing speeds, which directly and inherently influences convergence
performance and learning quality. Generally speaking, the initial exploration parameters
and their corresponding annealing speeds are modified via empirical knowledge when the
learning environment varies. However, simply decaying exploration parameter (linearly
or non-linearly) alongside the learning progress could easily lead to insufficient learning
or low speed of convergence. To deal with this unsatisfactoriness, the proposed QiRL
algorithm applies quantum-inspired action selection approach, offering natural balancing
between exploration and exploitation alongside the learning progress and thus can better

deal with the trade-off between convergence speed and learning quality.

4.6 Chapter Summary

This chapter introduced a QiRL solution to tackle the trajectory planning problem which
aims to optimize the ESUTR performance for the UAV flying from the start location to the
destination. Specifically, the proposed QiRL approach utilizes the novel collapse action
selection strategy inspired by quantum mechanism, which can offer a natural way to bal-
ance exploration and exploitation via sorting probabilities of action collapse in a ranking
sequence. Numerical results compared the convergence performance and the learned tra-
jectories between the proposed QiRL solution and the widely used Q-learning approach
with e-greedy and Boltzmann exploration strategies, validated the effectiveness of the
proposed QiRL solution and showed that the QiRL solution can better deal with trade-off

between convergence speed and learning quality than traditional Q-learning approaches.



Chapter 5

Path Planning for Cellular-Connected
UAV: A DRL Solution with

Quantum-Inspired Experience Replay

5.1 Introduction

In this chapter, several ideas from quantum mechanics are integrated with DRL techniques
to solve intelligent trajectory planning problem for cellular-connected UAV networks. The

main contributions of this chapter are summarized as follows.

e Different from the vast majority of existing literature, more practical A2G pathloss
model based on one realization of local building distribution and directional antenna
with fixed 3D radiation pattern are considered in this chapter. Then, a cellular-
connected UAV trajectory planning problem is formulated to minimize the weighted
sum of flight time cost and the corresponding expected outage duration. Without
prior knowledge of the wireless environment, the focused path planning problem is
challenging to be tackled via conventional optimization techniques. Alternatively,
the proposed optimization problem is mapped into MDP and solved by the proposed

DRL solution with novel QiER technique.
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e A novel QiER framework is coined to help the learning agent achieve better training
performance, via a three-phase quantum-inspired process. Specifically, the quan-
tum initialization phase allocates initial priority for the newly recorded experiences,
the quantum preparation phase generates the updated priority for the sampled transi-
tions with the help of Grover iteration, and the quantum measurement phase outputs
distribution of sampling probabilities to help accomplish the mini-batch training

procedure.

e To demonstrate advantages offered by the proposed DRL-QiER solution, perfor-
mance comparison against representative baselines is performed. Compared to DRL
approach with standard experience relay (DRL-ER) [89] or prioritized ER (DRL-
PER) [96], deep curriculum reinforcement learning (DCRL) method [146] and si-
multaneous navigation and radio mapping (SNARM) strategy [36], simulation re-
sults demonstrate that the proposed DRL-QIER solution can achieve more efficient
and steady learning performance. Moreover, the proposed DRL-QIiER does not in-
clude extra neural networks like SNARM approach, and requires much less hyper-
parameter tuning like DCRL or DRL-PER method, which means that it is easier and

more robust for implementation.

Although this chapter and [36] both focus on designing a DRL-aided solution for intel-
ligently navigating cellular-connected UAV, the main differences are: 1) detailed antenna
gain model and pathloss model are provided in this chapter, which makes the formulated
UAYV navigation problem more specific; 2) to overcome the bias issue and relieve the heavy
computation burden induced by the extra neural network of SNARM approach [36], i.e.,
the model-learning component termed as radio map, a light but reliable DRL-QIER solu-
tion is proposed, which is model-free and contains only one online training neural network;
and 3) quantum mechanism is introduced to aid experience replay efficiency for DRL
agent, enabling the proposed DRL-QIER solution to have the potential to perform out-
standingly than conventional DRL methods. Moreover, with the help of Grover iteration

in quantum computation, the QiER method in [147] is extended from 2D discrete rotation
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to its 3D continuous alternative, which introduces fewer additional hyper-parameters and
thus makes the QiER technique more flexible and reliable. Last but not least, compared
to Chapter 4, the quantum aid of enhancing action selection quality for tabular RL frame-
work [107] is extended to improve experience replay performance for DRL counterpart,
breaking the curse of dimensionality and enabling the agent to practically solve problems
with continuous state space.

Chapter organization: Section 5.2 presents the system model. Section 5.3 briefly in-
troduces quantum state and quantum amplitude amplification. Section 5.4 presents the
proposed DRL-QIER solution. Simulation results are given in Section 5.5, while chapter

summery is drawn in Section 5.6.

5.2 System Model

A downlink transmission scenario inside cellular-connected UAV network is considered,
where a set % of U UAVs is served by a set % of B BSs within cellular coverage.
These UAVs are supposed to reach a common destination from their respective initial
locations, for accomplishing their own missions.! Intuitively, each UAV should be nav-
igated with a feasible trajectory, alongside which the corresponding time consumption
should be the shortest and wireless transmission quality provided by the cellular network
should be maintained satisfactorily.> Without loss of generality, an arbitrary UAV (de-
noted as u hereafter) out of these U drones are concentrated for investigating the naviga-
tion task.? For clarity, the UAV’s exploration environment is defined as a cubic subregion
At [0, Xupl X [V Yupl X [Z105 Zypl, Where the subscripts “lo” and “up” represent the

lower and upper boundaries of this 3D airspace, respectively. Furthermore, the coordi-

!For example, one typical UAV application case is parcel collection. Various UAVs are launched from
different costumers’ properties carrying parcels to the local distribution centre of delivery firm. Besides,
collision avoidance during UAVs’ flights needs to be guaranteed, via separating UAV’s operation spaces
and keeping their flying altitudes higher than the tallest building.

>This chapter concentrates on UAV navigation task within coverage of cellular networks, while GPS-
supported UAV navigation is beyond the scope of this chapter and left as one of future research directions.

3These UAVs share the same airspace and common location-dependent database, which means that the
trained DRL model can be downloaded by the remaining UAVs, helping them accomplish their navigation
tasks.
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nate of the focused UAV at time 7 should locate in the range of g, < g,(f) < cfup, where
Gio = (X105 Vio» Z10) @nd gy = (Xyps Yyp» Zyp)- The initial location and the destination are
given by g,(I) € R and g,(D) € R, respectively. Therefore, the overall trajec-
tory of this UAV’s flight can be fully traced by q,(t) = (x,(?), y,(t), z,(1)), starting from

g,(I) and ending at g,(D). Besides, the location of arbitrary BS b € & is indicated as

@y = (xp, ¥p» 2p), Where Gio < Gjy < Gyp-

5.2.1 Antenna Model

While A2G channel model is of importance for characterize the performance of A2G links,
antenna model for cellular BSs is vital as well. Terrestrial transmission usually assumes
that the distance between transceivers is much greater than the height difference of their
antennas. In this regard, antenna modelling for terrestrial communications mainly con-
cerns 2D antenna gain on the horizontal domain. Unfortunately, 2D antenna modelling is
not sufficiently feasible for A2G transmissions, where high-altitude UAVs are involved.
More practically, 3D antenna gain should be considered for A2G transmissions, which

takes both the azimuth and elevation angles into account.

ZULA i %
A ‘

OuLa

dB

—-40-30-20-10 0 10

> yura
TULA P
(Boresight Direction) =
(a) Coordinate system of ULA (b) Vertical pattern at boresight

Fig. 5.1 Demonstration of ULA’s coordinate system and vertical radiation pattern
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In compliance with BS’s antenna modelling of current cellular networks, directional
antenna with fixed 3D radiation pattern is assumed to be equipped at each BS. Following
standard sectorization, each BS is portioned to cover three sectors. Therefore, there are
3 B sectors in total within the interested airspace A. Specifically, it is assumed that three
vertically placed M -element uniform linear arrays (ULAs) are equipped by each BS with
boresights directed to their corresponding sectors covered by this BS, subject to the 3GPP
specification on cellular BS’s antenna model [148]. In individual and independent coordi-
nate system of each ULA (e.g., Fig. 5.1a), antenna element’s placing location is denoted
as (0,0, z,,), where m = {1,2,... , M'}.

Then, the wave factor of ULA can be given by

7() = 277[ (Sln HULA COS d)ULA’ SlIl HULA SiIl (l)ULA, COS HULA) N (5.1)

where A = c/f, represents the wavelength, ¢ denotes the light speed and f, indicates the

carrier frequency. Furthermore, the steering vector can be derived as

o= [exp<—j%(0, 0,z1)T>, ,exp<—j%(o, 0, zM)T)]T . (5.2)

Suggested by 3GPP, vertical and horizontal radiation patterns in dB of each ULA are given

by )
Oupa — 90°
Ay (0yras dura = 0°) = —min { 12 <L> ,30dB p , (5.3)
®3dB
¢ 2
A (Bura = 90°, ) = —min 12( ULA) ,30dB 3, (5.4)
D348

respectively. Then, each ULA’s 3D element pattern in dB can be calculated as

A (Oyp» dura) =—min{—[Ay (Oypa. dura = 0°)+ Ay (Oyra = 90°, dyra)] -30dB} .
(5.5)
Note that each antenna element of ULA is directional, specified by half-power beamwidths

O34 and @ p for the vertical and horizontal dimensions, respectively. To suppress ICIs
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in cellular networks, the main lobe of ULA’s radiation pattern should be electrically steered
by 8,,;; € [0°,180°], where 0,,;;, = 90° means perpendicular to the ULA. To achieve the
steering angle 6,,;;,, fixed phase shift for each antenna element of ULA can be executed,
for which the complex coefficient of the m-th antenna element is given by

1 2
@ = i exp [—Jj 77{("1 — Dd,, cos eetilt] ’ (5.6)

where d,, indicates the vertical elements’ spacing distance. Furthermore, the array factor

can be formulated as

M

AF = Z om eXp(—j%(O, 0, zm)T> = @S, (5.7)
m=1
where ¢ = (g0, ..., g,,)" is the weight vector and the superscript * indicates the complex

conjugate. In the end, the 3D antenna gain of each ULA in dB can be calculated as [148]

Al0uLa-¢uLA) 5
G (Ourasdura) = 101g( IVI0T 10 AF* ). (5.8)

Fig. 5.1b illustrates an example for 8,,;, = 100°, under parameter setting @4z =
®yqp = 65°,d, = A2 and M = 8. It is straightforward to observe that the main lobe
is downtilted towards the ground for serving terrestrial communications, and the upper
side lobes can be utilized to support A2G transmissions. Denote i € {1,...,3B} as the
label of sectors in the considered region. Then, the transmit antenna gain from arbitrary
sector to the UAV can be explicitly determined by UAV’s location, denoted as G’ [c?u(t)] =
G (9,.”, qbiu), where 6;, and ¢;, can be obtained via taking g, (1), the location of ULA for

sector i and the ULA’s boresight direction into account.

*Note that the location of ULA for sector i is assumed to be the same as its associated BS, which is a
reasonable consideration because the distance among ULAs on the BS is much smaller than that between
the UAV and the BS.
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5.2.2 Pathloss Model

Different from terrestrial transmissions, A2G links are more likely to experience LoS
pathloss. In this subsection, the adopted A2G channel model will be interpreted.
According to 3GPP UMa pathloss model [32], the A2G pathloss in dB from sector i

to the UAV at time 7 is given by

| 28.0 + 22log (dy, ) +201logq (£,) . if LoS
pLi [ﬁu(f)] _ 210 (diu) g0 (/) ’
—17.5 + [46 — Tlog, (2,))] logyo (i) +201og, (40’3””6 ) . if NLoS
(5.9)

where d,, = ||q,(t)—q;||, outputs the Euclidean distance between the UAV and the location
of ULA for sector i.

To practically trace the type of A2G pathlosses, building distribution in the interested
airspace A should be taken into consideration. Fig. 5.2 illustrates an example of local
building distribution, including their horizontal locations on the ground and heights (Fig.
5.2a), as well as the corresponding 3D view (Fig. 5.2b). With given building distribution,
the type of large-scale pathloss of A2G channels for UAV at arbitrary location g,(?), i.e.,
LoS or NLoS in (5.9), can be accurately determined via checking the potential blockages

between the UAV and sectors.”

5.2.3 SINR at UAV

With the aforementioned antenna and pathloss models, the received signal of the focused

UAV u at arbitrary location g, over time ¢ can be formulated as

Gi [qm) PL' qua)]

3B
Yu(t)= Z \/10 Raxi(8) + n, (1), (5.10)

5Note that this method generating A2G pathloss is more practical than the widely used probabilistic A2G
channel model in current literature because the later can only characterize the average A2G pathloss rather
than its real counterpart.
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where x;(t) ~ €N (0, P;) is the emitted message from sector i to the UAV with aver-
age transmit power P,, h;, represents the corresponding small-scale fading channel® and
n,(t) ~ €40, 02) denotes the received AWGN at the UAV. Note that the explicit type of
pathloss, i.e., LoS or NLoS, can be determined via checking possible blockages according
to one realization of local building distribution as mentioned in Subsection 5.2.2. Assume
that the UAV is associated with sector i at time z, the instantaneous SINR at the UAV can

be derived as ) )
6" (0] ~PL' [3, (1))

W L)+ o2 ’ '
6" [Gu ()] -PL [, (1)) ) . .
where I,(t) = },; P10 10 |h;,|~ means the ICIs from un-associated sectors.

5.2.4 Problem Formulation

The received SINR (5.11) is a random variable because of the randomness introduced by
small-scale fadings, given UAV coordinate g,(f) and cell association i(¢). Hence, the cor-
responding TOP can be formulated as a function of g, (¢) and i(1),i.e., TOP,{q,), it} =
Pr [Fu(t) <I h] , where Pr outputs probability calculated w.r.t. the aforementioned small-
scale fadings. Then, the EOD of the UAV u travelling with trajectory g,(¢),Vt € [0,T,]

from g,(I) to g,(D) can be expressed as

T,

EOD,{q,1),i(} = / ' TOP,{q,®),i(t)}dt. (5.12)
0

According to (5.12), the UAV has more freedom to adjust its flying trajectory for vis-
iting stronger wireless coverage areas (say, regions with lower TOP) if longer flight time
budget 7T, is achievable. However, T, is commonly expected to be as short as possible,
for the consideration of energy consumption and time cost for accomplishing the corre-

sponding mission. Therefore, a dilemma of minimizing both 7, and EOD, exists in-

®This chapter aims to develop a UAV navigation method for arbitrary small-scale channel model. Hence,
the type of small-scale fading is not specified here, e.g., Rayleigh, Rician or Nakagami-m.

"This chapter focuses on the worst case where universal frequency reuse is assumed, which means that
all the non-associated co-channel sectors will be taken into account as the sources of IClIs.
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evitably. To balance this, this chapter focuses on minimizing the weighted sum of 7, and
EOD, {q,1), i()} via designing q,(t) and i(¢). Unfortunately, continuous time ¢ implies
infinite amount of velocity constraints and location possibilities, leading the UAV path
planning task too sophisticated to be handled. Alternatively, the flight period 7}, is uni-
formly divided into N time slots, making the navigation task practically trackable. The
duration of each time slot A, = T, /N is controlled to be sufficiently small so that the dis-
tance, pathloss and antenna gain from each sector towards the UAV can be considered as
approximately static within arbitrary time slot.® Besides, sector assignment is commonly
dependent on pathloss to avoid non-stop handover in practice, and thus the associated sec-
tor within each time slot is assumed unchanged. Therefore, (5.12) can be approximated as
EOD,{G,(),i(n)} = XN A,TOP,{G,(n).i(n)}. With given §,(n) and i(n) for each time
slot, TOP,{q,(n), i(n)} can be obtained via numerical signal measurement at the UAV.’

In this regard, one has

L
TOPG,n.in)} = 7 . ITOP{Z,(n), in)|A)}, (5.13)
=1

where (1) indicates one realization of the involved small-scale fading components, L rep-
resents the amount of signal measurements, the TOP indicator ITOP{q,(n), i(n)|h()} =
Lif T, {g,(n), i(n)|h(1)} < T, and ITOP{q,(n),i(n)|h(1)} = 0 otherwise. Note that L > 1
stands in practice, which means that the approximation (5.13) is feasible to be treated as
an equation. Then, the corresponding optimization problem can be stated as

T

N L
in(lﬁ% Y. Y ITOP{G,(n).i(n)|h@®)} + N, (5.14a)

n=1 1=1

81n the case of A, — 0, the discrete flight trajectory can accurately approach its continuous counterpart,
resulting in extremely heavy computation burden. Therefore, the length of time slot A, should be delicately
chosen to achieve satisfactory balance of approximation accuracy and computational complexity.

9The closed-form expression of TOP,{q,(n), i(n)} cannot be derived because this chapter aims to develop
a UAV navigation framework for arbitrary small-scale fading environment and the modelling of 4;,,i €
{1,2,---,3B} is not specified. Besides, A, (typically on the magnitude of second) is relatively greater than
the length of channel coherence block (on the magnitude of millisecond) caused by the small-scale fading.
Therefore, TOP,{g,(n), i(n)} can be practically evaluated by numerical measurements on the raw received
signals at the UAV via, e.g., RSRP and RSRQ reports [36].
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st. i(n)= argmin PL'[g,(n)], (5.14b)
ie{1,2,--,3B}

qgn+1) = g + V,A,5,(m), 15,(m]l = 1, (5.14¢)

dio = Gu(n) = Gup» 4,(0) = 4,(1), 4,(N) = 4,(D), (5.14d)

where 7 is the weight balancing the aforementioned minimization dilemma, V, represents
the UAV’s flying velocity and 0,,(n) specifies the mobility direction. The constraint (5.14b)
holds because the sector association strategy is dependent sorely on pathlosses from all the
sectors within each time slot and it is clear that the UAV should always pair with the sector
which can offer the least degree of pathloss.

It is straightforward to conclude that antenna gain and LoS/NLoS condition from each
sector to the UAV are dependent on the UAV’s location with given building and BS
distribution, which further impacts the corresponding pathloss and type of small-scale
fading. This makes it extremely sophisticated to solve problem (5.14) via standard opti-
mization methods, if not impossible, because the considered 3D antenna model, building
distribution-based pathloss model, un-specified small-scale fading setup are coupled with
each other in a complex manner. To provide a better alternative solving the proposed opti-
mization problem (5.14), a DRL-aided solution with a novel QiER framework is proposed

in this chapter.

5.3 Quantum State and Quantum Amplitude Amplifica-
tion

In this section, several basic concepts in quantum computation are briefly introduced,

which is of essence to the development of DRL-QiIER solution.
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5.3.1 Quantum State

As a special case of general quantum state introduced in Subsection 4.4.2, a two-eigenstate
quantum system (say, a single qubit) can be described as an arbitrary superposition state

of eigenstates |0) and |1), given by
|¥) =al0)+411), (5.15)

where the complex coefficients @« = (0|¥) and f = (1|¥) denote the probability ampli-
tudes for eigenstates |0) and |1), respectively. Note that the single-qubit superposition |¥)
is a unit vector (i.e., (¥|¥) = 1) in Hilbert space spanned by orthogonal bases |0) and |1),
subject to la|> + |8]* = 1. According to guantum collapse phenomenon, after measure-
ment or observation of an external experimenter, |¥) will collapse from its superposition

state onto one of its eigenstates |0) and |1) with probabilities |«|* and | 8|, respectively.

5.3.2 Quantum Amplitude Amplification

For a two-eigenstate qubit |¥), probability amplitudes of each eigenstate can be changed
via a quantum operation (e.g., Grover iteration [145]), gradually modifying the collapse
probability distribution. Two unitary reflections are applied to achieve Grover iteration,
given by

Ujgy=T-(1-¢%)]0)(0], (5.16)

Upgy = (1 /%) W) (Y| - I, (5.17)

where {¢;,¢,} € [0,2x], I indicates identity matrix, and (0| and (¥| are Hermitian
transposes of |0) and |¥), respectively. Then, the Grover iterator can be formulated as G =
U yyU o), which remains unitary. After m times of acting G on |'¥), the two-eigenstate
qubit with updated probability amplitudes can be given by |¥) « G™ |¥). Two updating
approaches can be used to accomplish quantum amplitude amplification task: 1) m = 1

with dynamic parameters ¢; and ¢,; and 2) dynamic m with fixed parameters ¢; and
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¢, (e.g., w). The latter updating method can only change the probability amplitudes in a

discrete manner, and thus the former solution is chosen in this chapter.

Proposition 5.1. For Grover iteration with flexible parameters, the overall effects of G on
the superposition |¥) can be derived analytically as G |¥) = (G —e/?)a |0)+(G—1)p |1),
where @ = (1 — /%) [1 = (1 — &/?)|a|*] and |(@ — &/*)*|a|* + (@ — D|*|B* = L.

Proof. The effects of Uy on |0) and |1) are expressed as
Uy 10) = [I = (1= e/?1)]0) (0[] [0) = /%1 |0), (5.18)

Uy 11) = [T = (1=¢/%1)|0)(0]] 1) = |1}, (5.19)

respectively. Then, one obtains
Ujgy [¥) = [ = (1= e/®)[0) (0[] |¥) = /®1a]0) + A1), (5.20)

where U | plays the role as a conditional phase shift operator.

Furthermore, one gets

G|¥) =Up U [¥) = (1= &) [a|0) + B|1)] [a (O] + 7 (L[] U ) 1¥) = U gy |¥)

= (0 — /P |0) + (€ — DB |1), (5.21)

where @ = (1 — &/?)(e/®1|a|* + |B]?) = (1 — /%2) [1 — (1 — &/?1)]a)?].
Because Grover operator G is unitary, the updated superposition |¥) « G |¥) still

follows the normalization rule of probability amplitudes, i.e., |(@ — ¢’ P2l + (@ —

DI?IBI* = 1. |

Corollary 5.1. The ratio between collapse probabilities of |¥) — |0) before and after
being impacted by G can be given by | % 12 = |(1—e/P1—e/P2)—(1—e/¢1)(1—/P2) | a|?|?, which
is symmetric w.r.t. ¢; = ¢, and ¢; = 2n — ¢,. Then, the updated collapse probabilities

onto eigenstates |0) and |1) can be given by | % |2|a|2 and 1 — |Z# |2|a|2, respectively.
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Proof. Based on (5.15) and (5.21), the ratio between the probability amplitudes of |0)
after being acted by G and before that can be derived as # = (1 — ¢/ 1 — eiP2) — (1 —

e/?1)(1 — e/%2)|a|?, which completes the proof. =

Remark 5.1. The process of |¥) <« G |¥) can be depicted geometrically on the Bloch

sphere. In Fig. 5.3a, |¥) is reconstructed in Polar coordinates, given by
|¥) = e/ (cos % 0) + &/ sing 1)) ~ cos % |0) + &/ sin g 1), (5.22)

where e/* poses no observable effects [106]. Then, the unit vector |¥) on the Bloch sphere
is uniquely specified by angle variables 6 € [0, ] and ¢ € [0, 27). The effect of U gy can
be regarded as a clockwise rotation around the z-axis by ¢, (the red circle) on the Bloch
sphere, leading to the rotation from |¥) to |‘I”) In a similar manner, when the basis is

changed from {|0),|1)} to {|'P),

lI’L>}, U |y results in a clockwise rotation around the
new z-axis |¥) by ¢, (the blue circle), rotating |‘P’ ) to |‘P(1)>. Hence, the overall impact
of G on |W) is a two-step process rotating the polar angle 6, on the perspective of basis
{10),11)}. With flexible ¢, and ¢,, it is possible to achieve arbitrary parametric rotation
on the Bloch sphere, which serves as the foundation for quantum amplitude amplification
task. The smaller 0 is, the higher probability |¥) will collapse onto |0) when it is observed

by an external examiner, and vice versa.

5.4 DRL-QiIiER Algorithm

In this section, a DRL-QiER solution is developed to solve optimization problem (5.14).

5.4.1 The MDP Formulation

To solve the optimal trajectory planning problem (5.14) via DRL-aided technique, the first

step is to map it into an MDP, which can be described as follows.
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(b) Grover rotation on |+)

Fig. 5.3 Geometric explanation of the Grover rotation
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e &: The state space consists of possible UAV locations g, under constraint g, <

g, < ﬁup, which means that the state space is continuous.

e o/: The continuous action space involves all the feasible flying directions 0, under
constraint ||7,|| = 1. To break the curse of dimensionality caused by continuous

state and action spaces, the action space is discretized as

oA = {[1, 0,010, 1,0],[-1,0,0],[0, -1, 0], [\/5/2, \/5/2, 0],

[=V/2/2, V212,01, [V2/2, =272, 01, [-V2/2. =\/2/2. 0] } , (5.23)

corresponding to flying directions right, forward, left, backward, right-forward, left-
forward, right-backward and left-backward, respectively. Thus, the action space

contains N ;4 = 8 direction options.
e 7 : State transition is deterministic and controlled by the mobility constraint (5.14c¢).

e r: The goal is to minimize the weighted sum of time cost and EOD. Thus, one may
Th,;

design the reward function as r(g,) = —1 — - 21L=1 ITOP{q,|h(1)}. The formu-
lation of r(g,) can be interpreted as follows: 1) for each time of state transition, the
agent will receive a movement penalty 1, encouraging the UAV to use less steps to
generate the trajectory; and 2) on top of the movement penalty, the UAV will get
a weighted outage duration penalty TTA’ ZlL:1 ITOP{q,|h(1)} as well, pushing the
UAV to visit locations with stronger wireless coverage quality. Besides, two special
cases are considered as follows: 1) once the UAV reaches the predefined destina-
tion g,(D), the training episode terminates and a positive value r, will replace the
reward function; and 2) once the UAV crashes onto the boundary of the considered
airspace, the training episode terminates and a negative value r,, will replace the
reward function instead. In summary, the aforementioned design of reward func-
tion aims to encourage the UAV to reach g,(D) with as fewer steps as possible,

while avoiding hitting the boundary and visiting areas with weak wireless coverage

strength.
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e y: To connect the objective function of (5.14) and the discounted accumulated-

rewards over each learning episode, the discount factor is chosen as y = 1.

Note that the formulated MDP is episodic, which means that each training episode
terminates once the terminal state is reached and then a new episode will be initiated with
the environment being reset. The terminal state of MDP corresponds to the predefined

destination or collision with the boundary.

5.4.2 Quantum-Inspired Representation of Experience’s Priority

In the proposed DRL-QIER solution, the priority of experienced transition exp, is repre-
sented by the k-th qubit, where the scalar index k indicates this transition’s location index
in the QiER buffer. Specifically, the quantum representation of stored transition’s priority
can be given by

W) =, 10) + By 1), (5.24)

where the complex-valued probability amplitudes a; and g follow the normalization con-
straint |ock|2 + Iﬂkl2 = 1. It is worth noting that the eigenstates |0) and |1) in (5.24) mean
accepting and denying this transition, respectively. After quantum measurement, the su-
perposition |‘Pk) will collapse onto eigenstate |0) with probability | (0|‘I’k> 1> = Iockl2 or
eigenstate | 1) with probability | (1 |‘Pk) 1> = |ﬂk|2. The complex coefficients a; and g, are
of importance and essence in the QIiER system, influencing the occurrence probability of
accepting or denying the corresponding transition when |‘Pk) is observed. The quantum
representation |‘Pk> establishes a bridge between quantum eigenstates and accepting or
denying particular transition, which allows us to apply quantum amplitude amplification

to realize manipulation of quantum collapse.

5.4.3 QIiER Framework

The proposed QiER framework consists of the following three phases.
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Quantum Initialization Phase

When transition exp; is stored into the QiER buffer with finite capacity C, a label k €
{1,...,C} will be assigned to exp,, which specifies the location of exp, being recorded
within the QiER buffer.!® Then, experience exp, and the k-th qubit |‘Pk> together will be
stored into the QIiER buffer, which can be regarded as a collection of (exp,, |Tk>). When
a new transition is recorded into the QiER buffer and before being sampled out to feed
the training agent, its associated qubit |‘Pk) should be initialized as eigenstate |0), i.e.,
|‘Pk> « ]0). The reason is that the agent has never been trained with these un-sampled
transitions that may have unimaginable potentials to help the agent learn the characteristics
of environment with which the agent is interacting. Thus, these newly recorded transitions
are allocated with the highest priority, encouraging the agent to more likely learn from

them.

Quantum Preparation Phase

After an experience is sampled from the QiER buffer to train the agent, the quantum prepa-
ration phase should be performed on its associated qubit, updating the corresponding pri-
ority. This is due to two reasons: 1) the TD error of this transition is updated; and 2) the
experience becomes older for the agent.

The uniform quantum state is defined as

\/_

2
[+)=—-0) +11)). (5.25)

which can be understood as a unit vector on the x-axis of Bloch sphere (Fig. 5.3b) with
0 = n/2 and @ = 0. The absolute value of TD error |6,] is chosen to reflect priority of the
corresponding transition exp,. Once a recorded transition is sampled, its associated qubit

|‘P «) should first be reset to the uniform quantum state, i.e.,

¥,) < |+). Then, to map the

'The QIER buffer is designed to be with fixed-size capacity in line with standard ER technique of DRL,
which means that the first stored experience will be popped out first to create space for recording the new-
coming transition when the QiER buffer is fully exploited. Therefore, each recorded experience is supposed
to remain in the buffer for a fixed time.
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updated priority of exp, into |‘I’k>, one time of Grover iteration with flexible parameters

will be applied on the uniform quantum state, shown as

V2 V2

(a) : 2 2
)= U0 14 2@ -+ -T2, 6526

where # = (1 — ¢/ ¢2) [1 —0.5(1 —¢’ b1 )] and the derivation (a) is based on Proposition
5.1. According to Remark 5.1, the transformation from [+) to |‘Pk) can be depicted on the
Bloch sphere as Fig. 5.3b. In this example, the phase shift parameters are set as ¢; < 7/2
and ¢, < x/2. It is straightforward to observe that the probability of collapsing onto
eigenstate |0) enlarges after the quantum preparation phase (i.e., |+) Uﬂw) |‘I’k>), be-
cause the polar angle rotates from £90° (of |+)) to an acute angle Oy, (of |‘I’k)). Similarly,
the collapse probability onto eigenstate |0) after one time of Grover iteration on |+) can be
kept unchanged or shrinked via selecting feasible combination of phase shift parameters
¢, €10,2x] and ¢, € [0, 2x].

In practical applications, some experiences may be sampled for training with undesired
high frequency, leading to over-training issue. Besides, the finite size of QiER buffer
could further deteriorate this disservice [149], which will cause unfair and biased sampling
performance. To circumvent this issue, the replay time of each stored transition should be
taken into consideration for the quantum preparation phase, which enables it to enrich
sample diversity to improve the learning performance. In the early stage of training the
agent, the importance of each experience is ambiguous. However, alongside the learning
process, the absolute TD errors of some transitions remain relatively large, despite many
times they have been sampled for training. Hence, it is necessary to relate training episode
to the quantum preparation phase.

The quantum preparation phase aims to modify the collapse probability onto eigenstate

|0), via one time of Grover iteration with free parameters ¢, and ¢,. To quantify the
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amplification step of quantum preparation phase, it is set that

edmax —e Smax 1 |6,| 7 ju
Y= Th ey - o < ) €l03): (527)
@fmax + @ Omax max
It te b4 T 3rx
= 5 €\l 7| 5.28
%2 rt .y e 4 2 (2 2 ] ( )

max max

With (5.27) and (5.28), the quantum amplitude amplification is related with the corre-
sponding absolute TD error |§;|, maximum TD error §,,,,, replay times rt;, maximum
replay time rt,,,, current training episode fe and the total training episode te,,,, which
means that the quantum preparation phase updates the priority of exp, into its associated

k-th qubit |¥}).

Remark 5.2. The collapse probability of |‘I’k) onto eigenstate |0) versus ¢, € [0,2x]
and ¢, € [0,2x] is depicted in Fig. 5.4. From this figure, one can find that | (O|‘I‘k) 1> =
0.5|2—e/®|%isa symmetric function w.r.t. ¢; = ¢, and ¢ = 2x—¢,, which is a specific
case (i.e., |a|* = 0.5) of Corollary 5.1. If one concentrates on surface within ¢, € [0, n/2]
and ¢, € [n/2,37/2], it is straightforward to conclude that (5.27) and (5.28) together can
control the quantum amplification step and direction. Specifically, larger ¢, will lead
to greater amplitude amplification step, for arbitrary fixed ¢,. Besides, ¢, controls the
amplification direction, where ¢, € [n/2, ) means that the probability of collapsing onto
|0) will be enlarged, while ¢, € (x,37/2) indicates that the probability of collapsing onto
|0) will be reduced.

Remark 5.3. In the early stage of training, the radio rt,/rt,,,,. remains relatively large be-
cause rt,,,. is not sufficiently updated yet. To avoid unreasonably denying all the sampled

transitions in the early stage of training, the factor telte,,,, is introduced to steer parameter

b, in (5.28).

After performing the initialization and preparation phases, the priority of each stored
experience can be determined via quantum measurement on its corresponding qubit, which

is the foundation for mini-batch sampling in the proposed DRL-QiER solution.
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Fig. 5.4 Collapse probability onto |0) versus ¢; and ¢,

Quantum Measurement Phase

After the QIER buffer is fully occupied by recorded transitions, a mini-batch of experi-
ences will be sampled to perform network training for the agent, via standard gradient
descent method. To prepare the mini-batch sampling procedure under constraint of priori-
ties, quantum measurement on the associated qubits should be accomplished first. Specif-
ically, the probability of the k-th qubit collapsing onto eigenstate |0) can be calculated as
| (0|‘I’k) |2. Then, the probability of the corresponding experience being picked up dur-
ing the mini-batch sampling process can be defined as bp; = | (0|‘Pk) 12/ Zeczl | (O|‘I’e) 12,
in which the denominator means the sum of collapse probabilities onto eigenstate |0) of
qubits that are associated with all stored experiences.

During the mini-batch sampling period, several times of picking recorded experiences
from the QiER buffer will be executed, following the generated picking probability vector
l;p = [bp;, bp,, ..., bpc] after quantum measurement phase. Note that the total sampling
time is equal to the size of mini-batch, which will be specified in the numerical result

section later.

Remark 5.4. Although the QiER buffer involves quantum representations and operations,
the corresponding processes, i.e., the quantum initialization phase, the quantum prepara-

tion phase and the quantum measurement phase, can be imitated on conventional com-
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puting devices without implementing real quantum computations on practical quantum

computers.

Remark 5.5. The associated qubit of sampled experience should be reset to the uniform
quantum state, which means that the corresponding quantum preparation phase starts
from the uniform quantum state rather than the previous counterpart. This is in line with
the quantum phenomenon where a quantum system will collapse onto one of its eigenstates
after an observation. Note that the sampled transitions are still remained in the QiER

buffer until they are discarded.

5.4.4 The Proposed DRL-QiIiER Solution

The proposed DRL-QIER algorithm is summarized in Algorithm 5.1, and its flow chart
is illustrated in Fig. 5.5. To solve the formulated MDP in Subsection 5.4.1, DDQN with
duelling architecture, i.e., D3QN, is adopted to approximate the Q function Q(g,, U,). To
further speed up and stabilize the learning process, N, -step learning and target network
techniques are adopted for updating parameters of the online D3QN. Specifically, accord-

ing to (1.12), the online D3QN aims to minimize the following loss function

2
Z(0p3) = [rt:t+NmS + YN’”SQ(CYM(HNM)’ 0,16073) — Oy I_ju(t)leDS)] ; (5.29)

where 03 is the parameter vector of the online D3QN, 6,, means the parameter vector
of the target D3QN. The selected action o}, in (5.29) is chosen from the online D3QN
rather than the target D3QN, i.e., U, = arg maxQO (G .+ N, 0,10 p3), which completes the
DDQN procedure. e

Algorithm 5.1 starts with network and hyper-parameter initializations, as shown in
step 1. At the beginning of each training episode, the UAV’s initial location is randomly
picked from the state space & (step 3). Then, the UAV chooses an action following the

popular e-greedy action selection policy, which means that the UAV either selects a ran-

dom action from the action space &/ with probability € € [0, 1] or chooses the optimal



5.4. DRL-QiIER Algorithm | 166

action that maximizes the state-action approximation of the online D3QN with probabil-
ity 1 —e. After the execution of the selected action, the environment will feed back the next
state and the corresponding immediate reward (step 5). The experienced transition exp,,
will then be recorded by a sliding buffer, to prepare for the N, -step learning (step 17).
When the sliding buffer is full, the latest N, -step experience can be generated and then
delivered into the QiER buffer (step 18-step 24). Each training episode terminates when
one of the following cases are encountered: reaching the destination, hitting the boundary,

or exhausting the step threshold (step 26)."!

When one episode is over, the exploration
parameter € will be annealed to encourage exploitation from exploration. For every fixed
amount of training episodes, the target D3QN will be updated to the online counterpart
(step 27). Once the QiER buffer is fully occupied, the mini-batch training for the online
D3QN begins (step 6-step 16). With the mini-batch samples, the online D3QN is trained

to minimize the mean counterpart of loss function (5.29), via standard stochastic gradient

descent approach (step 15).

The QiER Buffer

~ Sample Mini-Batch
) : D3QN Agent

Quantum Measurement Phase Batch Training on

on All Qubits the Agent .
¥ 3
Quantum Initialization Phase Sample A Transition Stored at ‘
on the k-th Qubit, i.e., the d-th Location to Compose Update TD error
[Wy) = [0) the Mini-Batch l
v
Reset the d-th Qubit to the

Initial Quantum State \ Quantum Preparation

. . Phase, i.c.,
Newly-}l\(elccor}iled Transition The Replay Time of the / [Wa) =U 1y Uy |+) Store Transition €xpn = {qu(n), an,mn, qu(n + 1)}
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Fig. 5.5 Flow chart of the proposed DRL-QiER algorithm

Remark 5.6. The proposed QiER framework for manipulating mini-batch sampling is re-
alized via adopting an unsorted data structure known as binary sum-tree, inspired by the
PER approach [96]. The motivation is that for achieving an efficient sampling perfor-
mance based on the current picking distribution l;p = [bp;, bp,, ..., bpcl, the complexity

should not depend on C which could be unbearably large in practice. An illustration of

!t is worth noting that although an explicit energy cost model (commonly for the UAV propulsion power
consumption) is not specified in the considered UAV navigation scenario, the global constraint of energy
consumption is implied because the step threshold N, ., poses a shared budget of propulsion energy cost for
all possible trajectories.
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Algorithm 5.1: The Proposed DRL-QiER Solution

1 Initialization: Initialize the online D3QN network Q ;(s, a|@p3) and its target network
Ops(s,al0p,), with 07, < Oy;. Initialize the QIiER buffer R with capacity C. Initialize
the vector of replay time as rt = [rt, rt,, ..., rtc] = 0. Set the size of mini-batch as
N,,;- Set the order index of R as k = 1. Set the flag indicating whether the QiER buffer
is fully occupied or not as LF = False. Set the maximum TD error as 6,,,,, = 1.;

2 forte =[1,te

3

10
11
12

13
14
15

16
17
18
19

20

21
22
23
24
25
26
27

28 end

max] do

Set time step n = 0. Randomly set the the UAV’s initial location as g,(n) € §.
Initialize a sliding buffer R with capacity N I

repeat

Select and execute action a,, then observe the next state g,(n + 1) and the
immediate reward r, = r,[q,(n + 1)];

if LF == True then

Perform quantum measurement on all stored experiences’ qubits and get the
vector of their replaying probabilities [bpy, bp,, ..., bpcl;

for n,, =[1,N,,] do

Sample a transition according to [bp;, bp,, ..., bpc] and get its location
indexd € {1,2,...,C};

Reset the d-th qubit back to uniform quantum state |‘I‘d) = |+);

Update the corresponding replay time rt,+ = 1 and rt,,,, = max(rt);

Calculate the sampled transition’s absolute N,,,,-step TD error [y |
and update the maximum TD error 6,,,, = max(dyay, [6n 1)

Perform quantum preparation phase on the d-th qubit;

end

Update the online D3QN network Q ;(s, a|@p3) via gradient descent
method using the mini-batch of sampled N, transitions from R;

end

Get and record transition exp, = {g,(n), a,,r,,q,(n+ 1)} into R;

if n> N, then

Generate the N, -step reward r,,_y ., from R and record N, ,-step
CXpCI‘iCHCC expn—Nms n = {é:,{(n - Nms)’ an—NmY’ rn—NmY ‘n> Ju(”)} into R with
order index k;

Perform quantum initialization phase on the k-th qubit as |‘~Pk) = |0). Reset
rt, = 0and let k+ = 1;

if £ > C then

Set LF = True and reset k = 1;
end

end

Let n+ = 1;

until G,(n) = G,(D) || Gu(n) & S || = Ny

Update € < € X dec,. Update the target D3QN Q p;(s, a0 ;) every Yp; episodes,
Le., 0, < Op;3;
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the used sum-tree architecture can be found in Fig. 5.6, where either the root node or
the parent node contains at most two child nodes as their offspring while their values
equal to the sum of their child nodes. Specifically, the k-th leaf node of the sum-tree is
pointed to qubit |‘I’k) and the corresponding stored transition in the QiER buffer, and
therefore there are C leaf nodes in total. When performing the quantum measurement
phase after the priority updating of quantum initialization phase or quantum preparation
phase, the sum of collapse probabilities onto eigenstate |0) of all involved qubits, i.e.,
Zeczl | (0|‘Pe) 1%, can be updated via propagating the measurement of any updated qubit
from the corresponding leaf node to the root node, enabling O[log(C)] updating and sam-
pling. Besides, the quantum amplitude amplification in quantum preparation phase is
based on Proposition 5.1 and Corollary 5.1, where the quantum collapse probability up-
dating is steered by closed-form expressions and thus negligible extra computation cost is
required. Therefore, complexity of the proposed QiER framework is comparable to that of
propositional PER and DCRL strategies. With the aforementioned efficient implementa-
tion, the proposed QIER framework only costs negligible extra computational power and
memory, compared to conventional ER approach. Note that SNARM approach adopting
ER strategy maintains an extra neural network for radio mapping, which is undoubtedly
more computation-expensive than DRL-ER, DRL-PER, DCRL and the proposed DRL-
QIER solution. Moreover, the QiER framework does not destruct the convergence of any
DRL agent that it is plugged onto, but may result in different convergence curve against
DRL agent aided with other experience replay techniques, because it sorely focuses on

polishing the picking process of stored transitions, as depicted in Fig. 5.5.

5.5 Numerical Results

In this section, simulation results for the proposed DRL-QiER solution and the corre-

sponding performance comparison against several baselines are performed.
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Fig. 5.6 Sum-tree architecture

5.5.1 Simulation Environment Setups

For conducting the simulation, the UAV’s exploration airspace is set as A : [0, 1]x[0, 1]x
[0,0.1] km. Fig. 5.7a delivers the top view of A, in which the locations of involved BSs
and the direction of each ULA’s boresight are specified. To generate building distribution
within A, one realization of statistical model suggested by the ITU [122] is invoked, subject
to parameters @, ﬁ and 7 as defined in Subsection 3.2.2. Besides, the small-scale fading
component of A2G link is assumed to follow block Nakagami-m channel model. The
common destination’s location is fixed at g, = (0.8, 0.8, 0.1) km, without loss of generality.

Unless otherwise mentioned, the parameter setups regarding simulation environment
are in line with Table 5.1. With the generated local building distribution, antenna model
and small-scale fading model, the corresponding TOP distribution over arbitrary UAV

location within A can be previewed as Fig. 5.7b.



Table 5.1 Parameter settings for simulation environment

Parameters Values | Parameters Values
Amount of BSs B 4 Amount of sectors 3B 12
Horizontal side-length of A D 1 km Amount of each ULA’s array elements M | 8
Half-power beamwidth ©5,5/®54p 65°/65° Speed of light ¢ 3 x 108 m/s
Carrier frequency f, 2 GHz Wave length 4 15 cm
ULA'’s element spacing distance d,, 7.5 cm ULA’s electrically titled angle 8,,;;, 100°
Antenna height of BS 25m Flying altitude of UAV 100 m
ITU building distribution parameter & 0.3 ITU building distribution parameter / 118
ITU building distribution parameter y 25 Total amount of buildings /D> 118
Expected size of each building &/ 0.0025 km? || Maximum height of buildings 70 m
Transmit power of each sector P, 20 dBm Nakagami shape factor m for LoS/NLoS | 3/1
Transmission outage threshold I, 0dB Average power of AWGN o’ -90 dBm
Duration of time slot A, 0.5s Velocity of the UAV V, 30 m/s
Amount of signal Measurements L 1000 Weight balancing the minimization 7 50

Table 5.2 Hyper-parameter settings for learning process
Parameters | Values | Parameters | Values
Capacity of QiER buffer C 20000 Size of mini-batch N, 128
Initial e-greedy factor € 0.5 Annealing speed dec, 0.994/episode
Target D3QN update frequency Y3 5 Length of sliding buffer N, 30
Positive special reward r 400 Negative special reward r -10000
Learning rate a;, Adam’s default Discount factor y 1
Maximum training episodes te .. 2000 Step threshold N, 400

| SIMSIY [edrunN ‘¢'¢

0LT
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5.5.2 Structure of DNNs and Hyper-parameter Settings for Learning

Process

The proposed DRL-QIER algorithm is implemented on Python 3.8 with TensorFlow 2.3.1
and Keras. Specifically, the DNNs of online D3QN agent are constructed with fully-
connected feedforward ANNs. The shapes of the online D3QN’s input and output layers
are subject to the UAV’s horizontal locations and the amount of possible flying directions,
respectively. Between the input and output layers, there are 4 hidden layers, where the
first 3 hidden layers contain 512, 256, 128 neurons, respectively. The last hidden layer
plays the role as duelling layer consisting of N s, + 1 neurons, where one neuron indicates
the estimation of state-value and the other N 4 heurons reflect action advantages. Then,
the outputs of the duelling layer will be aggregated to generate the estimation of the Nz,
actions at the output layer. Besides, the optimizer minimizing the MSE for the DRL-QiER
agent is Adam with fixed learning rate. The activation functions for each hidden layer and
the output layer are Relu and Linear, respectively. Note that the target D3QN shares the
same structure as its online counterpart.

The settings of hyper-parameter for learning process are stated in Table 5.2.

5.5.3 Training of the DRL-QIER algorithm

Fig. 5.8a and Fig. 5.8b depict the return history and designed trajectories of the proposed
DRL-QIER solution, respectively. Note that the moving average return for each training
episode is calculated via a moving window with length of 200 episodes, while the corre-
sponding designed trajectories are picked with spatially separated initial locations in the
late training stage (in the range of episodes 1900-2000), for the sake of neat and sufficient
demonstration. From Fig. 5.8a, it is straightforward to conclude that the moving aver-
age returns steadily converge to the maximum alongside the training process, although
some fluctuations are experienced, which is a typical phenomenon in DRL field. Besides,
from Fig. 5.8b, it is observed that the proposed DRL-QiIER solution can direct the UAV

from various initial locations to the common destination, with designed trajectories adap-
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Fig. 5.7 Simulation environment and the corresponding preview on TOP distribution
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tive to the TOP distribution. Regions with higher TOP are avoided while keeping the
UAV being directed to reach the common destination with possibly fewer moving steps
(equivalently, as short flying time cost as possible). For instance, even the near-to-zero
but extremely narrow TOP slots around (0.4,0.78,0.1) km and (0.6,0.79,0.1) km can be
recognized. On the contrary, higher TOP regions in the range of (0.4 — 0.6,0 — 0.5,0.1)
km are bypassed as much as possible. Another good example is the trajectory starting
from location around (0.95, 0.09, 0.1) km, where the “V” shape around (0.95,0.2,0.1) km
perfectly demonstrates the effectiveness of the proposed DRL-QiIER solution, in which the
higher TOP fields are avoided. Note that larger weight factor = will generally lead the de-
signed path to experience lower TOP regions, but inevitably enlarging the time cost (say,
longer and more tortuous trajectory) reaching the common destination. This is the reason

why weight factor 7 is invoked to balance the proposed minimization problem (5.14).

5.5.4 Performance Comparison

Four DRL-aided baselines are considered for performance comparison, listed as follows.

e DRL-ER: The D3QN is trained via mini-batch sampling from standard ER buffer
with uniform sample-picking strategy, which means that the transitions are picked

randomly from the ER buffer to accomplish the mini-batch sampling process.

e DRL-PER: The D3QN is trained via stochastic mini-batch sampling from the PER
buffer with proportional prioritization method, in line with [96]. In this approach,
the priority of each recorded transition x is measured by its corresponding abso-
lute TD error |6(x)|. Then, the probability of picking a transition from the PER
buffer follows p(x) = (|6(x)| + &)™PER/ Y, (|6(x")| + £)*PER, where a small positive
constant ¢ is used to avoid zero-priority case and apgr determines how much priori-
tization is applied, with apgg = 0 corresponding to the special case that is equivalent
to DRL-ER baseline. To correct the bias caused by priority-based sampling, nor-
malized importance-sampling (IS) weight W (x) = (C X p(x))_ﬂPER/ max,, W(x")

is calculated to scale the updating of DNNs, where C is the capacity of the PER
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buffer and fpgy reflects the amount of IS correction. The parameter fpgr should be
incremented from a relatively small positive constant to 1 over the training process

because a full-step update is more important when the algorithm begins to converge.

e DCRL: The DCRL training paradigm aims to offer better mini-batch sampling ef-
ficiency, according to the complexities of recorded experiences. Specifically, the
complexity of each transition is determined by self-paced priority and coverage
penalty, where self-paced priority maps TD error into the difficulty of current cur-
riculum and coverage penalty uses replay times of transitions to enhance sampling

diversity. For detailed implementation of DCRL, please refer to [146].

o SNARM: The framework SNARM invokes an extra DNN termed as radio map to
help improve the overall learning efficiency. The signal measurements alongside the
UAV’s trajectory are utilized to train not only the online D3QN but also the radio
map. The radio map enables it to generate simulated trajectories and thus reduces
actual trials. Based on standard Dyna architecture, one D3QN update with the actual
experiences follows several extra updates with the simulated transitions. Therefore,
the SNARM approach is promised to help achieve better learning performance while
reducing the cost of data acquisition from actual experiences. For more details of

SNARM, please refer to [36].

For fair comparison, the structures of online and target D3QNs for all baselines are the
same as those of the proposed DRL-QiER solution, while the hyper-parameter settings
of these baselines are in line with Table 5.2. Besides, the construction of radio map’s
DNN and the corresponding hyper-parameter settings of baseline SNARM are in accor-
dance to [36], while the complexity index function, the curriculum evaluation function,
the self-paced prioritized function, the coverage penalty function and the correspond-
ing DCRL hyper-parameter settings are in line with [146]. Furthermore, the additional
hyper-parameters regarding PER in DRL-PER baseline are set as apggr = 1, £ = 0.01 and
Pper = 0.4. All the baselines are altered to involve multi-step learning and start training

after their replay buffers are fully exploited. Nevertheless, all the baselines share the same
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randomly generated initial UAV locations with the proposed DRL-QiIER solution, for each
training episode.

Fig. 5.9a delivers the performance comparison on moving average returns of the pro-
posed DRL-QIER solution and considered baselines, versus training episodes. From this
figure, it is easy to find that SNARM approach can offer satisfactory learning performance,
thanks to the simulated trajectories enabled by the extra DNN (i.e., the radio map). Es-
pecially, in the range of training episode from 400 to 1000, despite that the radio map is
getting well trained as the training process going. Besides, DRL-PER, DRL-QiER and
DCRL approaches can achieve better moving average returns than DRL-ER method, in
the early-to-middle training stage (e.g., episodes 500-750). The reason is that DRL-ER
solution samples transitions uniformly without considering their priorities, which leads
transitions with higher importance to have less opportunities for training the online D3QN.
However, DRL-PER method experiences server fluctuations than DRL-QIiER and DCRL
(e.g., episodes 1250-2000), which is because DRL-PER does not take transitions’ replay
time into account and thus some transitions are sampled with undesired high frequency
while their absolute TD errors remain relatively large. The proposed DRL-QiER solution
showcases more steady learning ability, with less amplification of fluctuation and overall
raising trend, thanks to the QiER technique which balances sampling priority and diver-
sity in a better manner. Although SNARM and DCRL approaches can offer satisfactory
learning performances, their respective shortcomings are: 1) SNARM framework needs to
train an extra DNN, which thus introduces heavy training burden; and 2) it is difficult to set
up feasible complexity index function, curriculum evaluation function, self-paced priori-
tized function, coverage penalty function and the corresponding DCRL hyper-parameters,
which limits the robustness of DCRL solution. The proposed DRL-QIiER method requires
less hyper-parameters tuning and contains no extra DNN, and therefore is easier and more
robust for implementation. Besides, the evolution history of flight paths governed by all
the considered algorithms amid training process are demonstrated in Fig. 5.9b, Fig. 5.9¢

and Fig. 5.9d. Specifically, Fig. 5.9b and Fig. 5.9c depict the generated trajectories in the
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early and middle stages of training, picked from episode ranges 350-360 and 1000-1004,
respectively. Trajectories in Fig. 5.9b fail to find the destination and violate the regula-
tion of either not exhausting maximum step threshold or not crushing onto the boundaries,
while those in Fig. 5.9c are more adaptive to the cellular coverage environment but some
of them still violate the regulation of not colliding onto boundaries. As training goes by,
it is clear that all the simulated algorithms are getting more experienced and thus adaptive
trajectories are becoming more likely to be generated. At the end, Fig. 5.9d depicts the
comparison on designed trajectories of the implemented algorithms, over three represen-
tative starting locations chosen from episodes 1910-2000. It is straightforward to observe
that the proposed DRL-QiIER and the considered baselines direct the UAV to hit the com-
mon destination with different trajectories that are in line with the formulated trajectory
optimization goal.

Fig. 5.10a demonstrates comparison on average time cost of designed trajectories and
the corresponding EOD for the considered algorithms, over four episode slots 1-1400,
1401-1600, 1601-1800 and 1801-2000. From this figure, one can find that the proposed
DRL-QIER solution can help achieve both lower average EOD and average time cost,
within each episode slot. Especially, in the late training state (e.g., episode slot 1800-
2000), the proposed DRL-QIiER method outperforms other baselines, in terms of both
average EOD and average time cost. Furthermore, Fig. 5.10b illustrates comparison on
average duration and average weighted sum of EOD and time cost over the last 200 training
episodes, for all the DRL-aided approaches and non-learning-based strategy termed as
straight-line. From this figure, it is easy to find that while the straight-line solution offers
the cheapest average time cost, it leads the UAV to suffer the highest average EOD, which is
extremely non-preferable and thus unveils the benefits provided by DRL-aided approaches.
On the contrary, the proposed DRL-QIER solution can not only help the UAV experience
the lowest average EOD, compared to both other DRL-aided approaches and the straight-
line strategy, but also direct the UAV to reach the common destination with the cheapest

average time cost, against other DRL-aided solutions.
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To further highlight superiority of the proposed DRL-QIER solution against conven-
tional path planning approach, performance comparisons between DRL-QIiER and two
other non-learning baselines are demonstrated in Fig. 5.11 and Table 5.3, for three dif-
ferent initial locations. Specifically, the BS-approaching baseline aims to direct UAV to
travel across the nearest BS alongside the flight because intuitively locations nearby BS
can provide stronger coverage quality. The other non-learning baseline is based on the
assumption of BS’s circular coverage, within which arbitrary location is simply treated
as that can provide satisfactory coverage strength. The circles in Fig. 5.11 are taken as
examples to evaluate the designed trajectories under the circular coverage assumption.
Note that unlike the aforementioned DRL-related approaches, both of these two consid-
ered baselines are not dependent on the actual TOP distribution, and thus naive and inferior
trajectories could be generated. To validate this, Table 5.3 delivers comparison on average
durations of circular, BS-approaching and DRL-QIER solutions, over trajectories started
from the considered three initial locations. From this table, it is straightforward to observe
that the proposed DRL-QiER solution can direct UAV to achieve the minimum amount of
average weighted sum of time cost and EOD where the corresponding average EOD is the
cheapest, while the other two non-learning baselines suffer from greater average EOD.
The corresponding reason can be interpreted as that the proposed DRL-QiER solution
(more generally, DRL-aided approaches) is trained via interacting with the actual TOP
distribution, which validates the advantages provided by DRL-related solutions against

non-learning alternatives.

Circular BS-Approaching DRL-QiER

Time Cost 28.440 s 31.916s 31.234 s
EOD 10.469 s 12.128 s 8.136 s
Weighted Sum of

Time Cost and EOD 551.890 638.316 438.034

Table 5.3 Comparison on average durations of circular, BS-approaching and DRL-QiER
solutions
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5.6 Chapter Summary

In this chapter, an intelligent navigation task for cellular-connected UAV networks was in-
vestigated, aiming at minimizing the weighted sum of time cost and expected outage dura-
tion alongside UAVs’ flying trajectories towards the common destination with randomly-
generated initial UAV locations. To navigate the UAV, a DRL-QIER solution was pro-
posed, in which the innovative QiER technique helps the DRL agent hit a better learn-
ing efficiency. Simulation results validated the effectiveness of the proposed DRL-QiER
solution, while performance comparison against both several DRL-aided baselines and
straight-line strategy showcased DRL-QiER method’s superiority. Moreover, the pro-
posed QIiER framework can be potentially extended into other existing DRL frameworks

that are dependent on ER technique, e.g., DDPG, TD3, SAC and Rainbow.



Chapter 6

Conclusions and Future Works

In this chapter, the major contributions and insights of this thesis are summarized, possible
extensions of current technical contents are blueprinted, and promising future research

directions are mentioned.

6.1 Conclusions

This thesis concentrated on one hot and prominent subfield of wireless communications,
i.e., UAV-aided networks. To help achieve efficient applications and implementations of
UAV from the perspective of wireless transmissions, this thesis comprehensively consid-
ered three key technical challenges, i.e., performance analysis, radio resource management
and trajectory optimization. Specifically, analyses on transmission outage and covert-
ness were conducted to analyse and evaluate the proposed HOR UAV-relaying protocol
in Chapter 2. Besides, radio resource management issue for interference coordination and
transmission enhancement in the scenario of cellular-connected UAV networks was inves-
tigated in Chapter 3. Moreover, integrating several ideas from quantum mechanics with
cutting-edge RL/DRL frameworks, Chapter 4 and Chapter 5 proposed QiRL and DRL-
QIER algorithms to solve optimal UAV navigation problems in the cases of UAV-BS and
cellular-connected UAV, respectively. The main contributions and meaningful insights

are briefly drawn as follows.
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Taking advantages of UAV’s high flying altitude to help relay wireless messages from
ground transmitter to terrestrial receiver, a UAV-relaying protocol named HOR was pro-
posed in Chapter 2. To cope with UAV’s restricted on-board power supply issue and in-
evitable SE loss of HD relaying strategy, SWIPT and FD technologies were adopted into
the proposed HOR scheme. For truly enabling FD SWIPT functionality, a hybrid battery
model was adopted, whose time-varying charge-discharge behaviour was tracked with the
help of energy discretization and MC'’s stationary distribution. To characterize perfor-
mance of the proposed HOR protocol, evaluate impacts of key system parameters and
expose fundamental trade-offs, transmission outage analysis was performed via deriving
closed-form expressions of TOP. Then, to better detect potential covert transmissions that
may leak essential information of legitimate transceivers if the UAV-relay was malicious,
covert communication analysis was investigated through deriving closed-form expressions
of minimum detection error probability. Numerical results validated the effectiveness and
superiority of the proposed HOR protocol for improving TOP performance, compared
to benchmarks where no relay or conventional relay is helping terrestrial transmissions.
Besides, it was also demonstrated that the derived closed-form expression of optimal de-
tection threshold is able to help terrestrial transceivers to achieve a more solid detection
performance of potential information leakage. Some representative findings and trade-
offs exposed by the aforementioned performance analyses are: 1) the minimum detection
error probability is a monotonically-increasing function w.r.t. the degree of channel un-
certainty, which means that a more accurate channel estimation quality is beneficial for
hitting a higher probability of successfully detecting the potential information leakage; 2)
the trade-off of harvesting more energy and pursuing stronger received SNR makes the
optimal PS factor existing and more delicate energy discretization leads the optimal PS
factor to be smaller which means that more portion of harvested energy can be allocated
to information processing; and 3) a shorter propagation distance between the UAV-relay
and the ground transmitter is preferred for achieving a better TOP performance because the

amount of harvested energy is sensitive to pathloss. In short, the proposed HOR protocol
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for UAV-relaying networks has been proven to be effective for helping achieve higher wire-
less energy manipulating efficiency, better wireless transmission performance and more
solid privacy protection for wireless communications.

In Chapter 3, a hybrid D3QN-TD3 algorithm was designed to deal with radio resource
management issue, for ICI mitigation and transmission enhancement in cellular-connected
UAV networks. To realize harmonious coexistence of UAV and ground UEs in cellular
networks, a time-frequency RB allocation criteria was initiated. Then, for improving wire-
less transmissions from ground BS to UAYV, transmit beamforming technique was adopted.
The considered joint design of RB allocation and transmit beamforming is challenging to
be tackled via conventional optimization techniques because the practical considerations
of, e.g., building distribution based A2G pathloss model, compatibility of different small-
scale (fast) fading channel models and rich channel dynamics inferred by UAV mobility.
Alternatively, DRL-aided frameworks, i.e., D3QN and TD3 agents were applied to solve
RB allocation in discrete domain and beamforming vector design in continuous regime
for the formulated radio resource management task, respectively. To circumvent poten-
tial training difficulties caused by large RBP matrix, CNN was invoked to extract features
from RBP matrix, which then will be flattened and fed to the D3QN network for further
training. To deal with dimension imbalance and gradient vanishing, dimension expansion
and prior-activation penalty tricks were adopted to help the TD3 network commit a more
reliable and robust learning performance. After interactively interacting with environment
and sufficient training, the proposed hybrid D3QN-TD3 solution was validated to be ca-
pable of selecting proper RB index and generating effective beamforming vector in the
challenging scenario of heavy channel reuse and highly dynamic channel varying, where
D3QN and TD3 components were demonstrated to be able to offer independent perfor-
mance gain. Theoretically, the proposed hybrid D3QN-TD3 algorithm is adaptive to any
types of potentially feasible small-scale fading and arbitrary trajectories, rooted from facts

that the formulated optimization problem did not pose any specification on small-scale



6.1. Conclusions | 186

fading model and the time-varying RBP matrix as well as fast fading is independent to
UAV’s mobility, which means that it possesses favourable flexibility and generality.

In Chapter 4, a QiRL solution was proposed for UAV path planning to maximize ES-
UTR, where UAV plays the role as aerial BS collecting data from terrestrial UEs in the
uplink. Without a prior information regarding wireless transmission environment, tabular
RL framework was invoked to solve the formulated UAV navigation problem in a trial-
and-error manner. Unfortunately, conventional value-based RL algorithm suffers from
dealing with the dilemma of exploration and exploitation, which is due to the fact that ac-
tion selection policy is inherently related to tuning exploration factor. However, the initial
exploration factor and its annealing rate are manually selected to realize valid training for
different application scenarios, which severely constrains the robustness, adaptiveness and
reliability of tabular RL algorithms. For pursuing a better way to improve learning perfor-
mance via innovating new action selection policy for tabular RL framework, state super-
position and amplitude amplification from quantum mechanics were adopted to formulate
a novel quantum-inspired action selection policy, which can cope with the balancing of
exploration and exploitation without tuning exploration factor. It was illustrated that the
proposed QiRL solution is capable to efficiently solve the considered path planning prob-
lem for different radio environments, while advantages offered by the quantum-inspired
action selection policy were showcased via comparing with typical RL baselines.

In Chapter 5, an intelligent cellular-connected UAV navigation problem with various
initial UAV locations and a common destination, aiming at minimizing the weighted sum
of flight time cost and EOD, was formulated and then solved by a DRL-aided approach
with QiER technique, i.e., the proposed DRL-QIER solution. This chapter considered
one of the most challenging wireless propagation cases, where practical 3GPP-suggested
A2G pathloss model with local building distribution and ULA with fixed 3D radiation
pattern were invoked to generate the complex cellular coverage environment. Although
DRL-related frameworks can help circumvent shortcomings of conventional optimization

techniques for solving problems without explicit environment information, it may still fail



6.2. Future Works | 187

to help the UAV accomplish the considered minimization task on weighted sum of time
cost and EOD in an efficient way. To further polish learning quality of DRL agent, a QiER
framework was coined to help DRL agent commit a better experience replay performance,
via a three-phase procedure inspired by superposition phenomenon of qubit, quantum am-
plitude amplification and collapse measurement. Complexity comparison validated that
the proposed QiER framework only requires negligible extra computational resource and
memory, to achieve which unsorted sum-tree data structure was adopted. Numerical re-
sults demonstrated that the proposed DRL-QiER can efficiently direct the UAV to accom-
plish the formulated navigation goal, compared to several representative DRL-based and
non-learning baselines. An interesting and prominently promising feature of the coined
QiER framework is that it is a plug-in attachment for DRL agent, altering traditional or
advanced experience replay exponent, e.g., ER or PER technique, which means that it can
be easily and smoothly transplanted to aid other DRL algorithms where experience replay

buffer and transition sampling are of necessity, e.g., Rainbow, TD3 and SAC.

6.2 Future Works

6.2.1 Extensions of Current Works

Incorporating Subsection 1.5.3, the technical contents included in this thesis are expected

to be further polished and fortified in the following several directions.

— For extending Chapter 2, the following perspectives are worth considering: 1) for
LoS/NLoS A2G transmissions, different small-scale fading models should be in-
tegrated separately, i.e., adopting Rician or Nakagami-m fading with m > 1 and
Rayleigh fading to characterize LoS and NLoS A2G links, respectively; and 2) tak-
ing average on distances to analyse the corresponding ergodic transmission outage
performance. For example, the UAV’s location could be assumed following Poisson
Point Process that is suitable for modelling UAVs as user hotspots, or Matern hard-

core process that is commonly used in the scenario where UAVs are supposed to be
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apart from each other farer than a distance threshold, Then, with the help of stochas-
tic geometry, expected transmission outage performance could be performed, if the

related derivations are not mathematically intractable.

The contributions of Chapter 3 can be further delimited by involving UAV trajectory
design, to realize a joint optimization on time-frequency RB allocation, transmit
beamforming and UAV navigation. Furthermore, more sophisticated but flexible
RB allocation may deliver a more solid performance enhancement, e.g., the UAV
is able to occupy more than one RB index each time. Another important extension
direction could be taking the procedure and overhead of cooperative transmission

into account, which may enhance practicality of the proposed solution.

The curse of dimension of proposed tabular QiRL framework in Chapter 4 could be
broken via adopting DNN to estimate Q values, which can enable it to tackle tra-
jectory optimization problem with continuous state and/or action spaces. However,
how to integrate Grover iteration to aid action selection policy of RL algorithm with

DNN is still an open challenging problem and thus an important extension direction.

Altering the D3QN agent adopted in Chapter 5 with DRL agent that can solve path
planning involving continuous action space is a promising extension direction, for
realizing 360° UAV navigation. Fortunately, the coined Grover iteration based ex-
perience replay framework is independent to DRL agent that it is attached to, which
makes it simple and straightforward to be plugged onto other state-of-the-art DRL
algorithms that are able to tackle problem containing continuous state and action
spaces, e.g., TD3 and SAC. Besides, relaxing the assumption of fixed UAV’s flying
speed may help achieve a better quality of UAV navigation, i.e., 360° path planning
with continuous propulsion speed. However, a fully-flexible navigation with contin-
uous velocity will introduce infinite possibilities of flying direction and speed, which
could be extremely challenging and may need more tricks to help achieve the for-

mulated UAV navigation goal, e.g., model pre-training for letting the UAV prefer to
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fly toward the common destination, learning rate scheduling, delayed policy update,
pre-activation penalty and next-action planning including repetition avoiding that is
used to free the UAV from being trapped in a local subregion and coverage-aware
directing that requires training another DNN to learn the model (strength distribu-
tion of cellular coverage). Moreover, UAVs are mainly supported by GPS system
to realize localization and navigation in current practice, therefore GPS-enabled or
opportunistic-GPS-cellular-empowered UAV trajectory design is an essential and

promising research direction.

Apart from the aforementioned extension envisions for each specific technical chapter,
some common issues that are not considered or solved in this thesis leave spaces for future

investigations, listed as follows.

+ Multi-UAV Scenario: Although performance analysis and optimization focusing on
single UAV can provide significant insights for analysing and optimizing perfor-
mance of UAV-aided networks, considering multi-UAV communication scenario
where UAVs are cooperating or interfering with each other can help deliver more

generalized and less limited contributions, e.g., UAV swarm networks.

+ Energy-Efficient UAV Transmissions: In UAV-mounted networks, power consump-
tion spent by UAV for wireless communications are relatively insignificant com-
pared to that cost by propulsion. Despite that this thesis does not consider explicit
model of UAV propulsion energy cost, energy-efficient UAV communications aim-
ing at dealing with the trade-off between maintaining satisfactory A2G transmission
quality and minimizing propulsion energy consumption could be an essential and

promising extension direction.

+ Decentralized/Distributed Learning: All the proposed RL/DRL based learning al-
gorithms belong to the field of centralized learning where one single model is being
trained over a centralized dataset, despite that quantum mechanics are adopted to

help achieve a better learning performance. Although centralized learning solutions
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are proven to work efficiently for the considered UAV transmission scenarios in
this thesis, decentralized/distributed learning may help further unleash the power of

learning-based approaches, e.g., federated DRL.

6.2.2 Promising Research Directions on UAVs

In addition to this thesis’s current technical contents and blueprinted extensions, there
are many interesting and promising future research directions in the field of UAV-aided

wireless networks, of which some emerging examples are listed as follows.

Security-Aware UAV-Mounted Transmissions

As the development and advancement of modern wireless networks, e.g., 5G and beyond,
increasing number of wireless transceivers and more complex architectures of networking
are inevitably emerging, which raises communication security issue to a new high level
of priority. Among many solutions for enhancing transmission security where UAVs are
legitimate users, e.g., cryptography, information-theoretic method that utilizes the inherent
randomness characteristics of wireless channel, i.e., physical layer security, embraces new
opportunities for helping achieve secure transmissions of UAV-aided networks [150, 151],
thanks to LoS-involved A2G links and UAV’s mobility. However, on the other point of
view, if UAVs are playing the role as eavesdroppers, it leads ensuring security to be more
profoundly challenging. Therefore, how to adopt physical layer security techniques to
realize secure transmissions for legitimate UAVs or combat airborne eavesdropping from

malicious UAVs is a new challenge that is worthy of delicate future research.

UAV-Aided 3D MIMO

Due to the nature that UAVs are flying aloft in the sky and their locations can be flexibly
deployed, they are suitable to be applied as aerial platform performing flexible 3D MIMO
for ground UESs, which is able to create propagation beams in both horizontal and vertical

directions. Different from traditional 2D MIMO, 3D MIMO is able to support more UEs
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and achieve higher MIMO spatial multiplexing gain, which is more adaptive to environ-
ment where the served UEs are distributed in various 3D locations with different antenna
heights [5, 152]. Blessed by high working altitude of UAV, ground UEs located in 3D
space could be more easily to be recognized and distinguished, while LoS-involved A2G
links can help realize high-quality and robust beamforming performance in both elevation
and azimuth slices. Therefore, how to efficiently deploy UAV to realize significant 3D

MIMO gain is a promising future research direction.

UAV-Enabled Offloading

Some emerging wireless technologies, e.g., autonomous driving, virtual reality (VR) and
augmented reality (AR), are implicitly sensitive to latency caused by, inter alia, wireless
transmissions and computations, within scenario where a huge number of transceivers are
included. However, it is extremely difficult to efficiently implement the aforementioned
emerging technologies in practice. The involved wireless transceivers are usually of con-
strained computation and storage resources, and thus ultra-low latency signal exchanges
are challenging to be achieved. For relieving this suffering, mobile edge computing (MEC)
is deemed as a promising solution, via enabling computation-limited UEs to offload their
unbearable computation mission to nearby servers, e.g., BS. For applying such solution,
UAV could be highly beneficial, thanks to UAV’s configurable mobility nature. UAVs
can play the role as aerial access point to help edge UEs more seamlessly offload their
computation tasks, via flying closer to them [17, 153, 154]. To maintain satisfactory A2G
transmission links, UAV is usually required to hover at a certain location for serving edge
UEs to achieve the most efficient offloading performance. However, if UAV’s propulsion
energy consumption is taken into consideration, it will lead the UAV-aided offloading
problem to be more sophisticated, which demands future investigations, e.g., to realize
efficient UAV-aided offloading performance whilst minimizing UAV’s propulsion energy

cost for supporting both marching and hovering.
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