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The Next-Gen (6G) Wireless Systems
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Motivations
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Motivations

® |oT user equipments (UEs) have limited power and computing resources, yet
require prolonged operation, emphasizing energy efficiency.

® THz technology enables low-latency and high data rate multi-access edge com-
puting (MEC) services, such as task offloading.

e UAV-aided MEC on THz mitigates propagation limits, blockages, and coverage
issues by leveraging UAVs' mobility and short-range LoS links.
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Contributions
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Contributions

® The Gap: Limited research exists on energy-efficient UAV-aided MEC systems
operating on the THz band.

® The Difficulty: Al-native solutions for adapting to dynamic wireless environments
remain inherently challenging and lacking.

e Core Contribution: This work addresses the gap by proposing an Al-native algorithm
for energy efficiency maximization in UAV-aided MEC networks over the THz band.
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System Model
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System Model Diagram of Multi-UAV Computation Offloading for Many loT UEs

Multiple UAVs are deployed to provide multiple energy-limited computation-scarce ter-
restrial loT user equipments (UEs) with accessible task offloading services on THz band.
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Energy Efficiency Maximization Problem
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Key Considerations

To enable energy-efficient multi-UAV-assisted MEC frameworks in loT, the following
challenges must be addressed:

o How to design UAV trajectories to establish high-quality ground-to-air (G2A) links
for efficient task offloading in multi-UE scenarios?

o How to jointly optimize communication and computation resources, including trans-
mit power, UAV-UE associations, CPU clock speeds, and time slicing, to enhance
system metrics like energy efficiency?

o How to develop an agile multi-agent learning framework capable of handling non-
stationarity and dynamically adapting to the challenges of MUME UAV-assisted
MEC systems?
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Energy Efficiency Maximization Problem
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The Energy Efficiency Maximization Problem under Investigation

We seek to maximize expected energy efficiency for multi-UAV multi-UE computation
offloading systems over the THz band.
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We jointly optimize communication and computation resources, including:

= UAVs’ trajectories (v,[n]),

= UEs' local central processing unit (CPU) clock speeds (f;[n]),

= UAV-UE associations (¢¢[n]),

= time slot slicing factor (7/[n]),

= UEs’ offloading powers (Pg[n]).
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The Proposed MADRL Solution
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Why Al-Aided Solution?

Solving the formulated multi-dimensional maximization problem with classical optimiza-
tion techniques, such as game theory or convex optimization, is extremely difficult due
to the following key challenges:

o Non-convex objective function: The objective consists of accumulated fractional
functions with multiple summations, making it a on-convex mixed-integer non-linear
programming (MINLP) problem that is NP-hard.

o Coupled optimization parameters: The parameters, including discrete binary

variables ¢g[n], vector v[n], and ranged floats fg[n], 7/[n], and Pg[n], are intertwined
in both the objective and constraints.
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The Proposed MADRL Solution
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Why Al-Aided Solution?

o Non-convex constraints: Examples include:

® Norm inequality in the mobility constraint,
® Binary index-involved UAV-UE association constraint,
® Time slot allocation constraints.

These lead to high computational and algorithmic overheads.

Alternative Solution: An Al-native solution from a data driven perspective, i.e., model-
free DRL-aided algorithm, will be proposed to efficiently tackle the formulated optimiza-
tion problem by training with raw experiences from interactions between DRL agents
and the task offloading environment.
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The Proposed MADRL Solution
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Why Multi-Agent Reinforcement Learning?

o Enables distributed implementation of wireless protocols at the
edge.

o Facilitates experience sharing, allowing less-trained agents to learn
from more skilled ones.

o Accommodates heterogeneous agents with diverse learning goals
and device capabilities.
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The Proposed MADRL Solution
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Main Difficulties in Solving the Joint Computation and Communication Resource
Management Problem

o High-dimensional spaces: Continuous state and action spaces cause severe di-
mensionality challenges.

o Exploration vs. Exploitation: Balancing new strategy exploration with exploiting
learned policies is complex in infinite action-state spaces.

o Non-stationarity: Dynamic environments cause state transitions and rewards to
depend on joint actions, with agent behaviors evolving over time.

o Scalability: Complexity grows exponentially as the number of agents, e.g., thou-
sands of devices, increases.

o Sample inefficiency: Multi-agent learning requires a large number of samples to
establish effective policies or equilibria.
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The Proposed MADRL Algorithm

The Proposed MADRL Solution
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Algorithm 1: The Proposed DSPAC-MN Solution

1 Initialization: Initialize online NNs' layers, as per OWL, Synchromze the
exploratory actor nclworks and shadow networks via @Fu Q%

©% < ©% and @ ¢ O Initialize replay buffer B of size B
and the mini-batch simpler D of size D. Set total training siep . = O:
2 for te = [1, tema) do
3 Reset time step n. = 0, UAVS’ locations o q, [n] and queues to Qg [n] =
0, zhen the current state s[n] = {qu[n], Qq[n]} is genemwd'
4 repeat

H Perturb each exploratory actor via ©@P% + @%4 +

‘ Each UAV observes s[2] and outputs a,[n] = 7, (s[n]\epu )+
N, then the joint action a[n] = [ay[n]], ¢y is formulat

7 Execuate the joint action a[n], observe the next state s[n + 1] and
receive the immediate common reward 7[n];

8 if | B] < B the

s ke Archive experience (s[n), afn], sin + 1], r{nl) imo B;

it ® Replace the carliest stored expenences in B with the new
transition (s[n], a[n], s[n + 1], 7[n]);

" if |B| > D then
13 andomly sample a mini-batch of size D from B into D, i.e.,
Smy 8m,y Smi1,Tm) € D~ By

1 for u € U do _

15 The shadow actor outputs 7, (s,,,H |@%u ) +N" to
calculate the target Q value;

16 Update the dual online critics’ trainable arameuen e i by

batch gradient descent on MSE loss z( J)

17 Increment the total training step n, < n,

18 if n¢% N, == ( then

19 lnr u € U do

2 ‘The online actor generates ., (s, |©);

2 Ugdaw all the online actors’ tunable parameters o by

atch gradient ascent by the chain rule as per (19);

2 Update shadow networks ©*u¢—7, @+ (1 —7,)@%u
and @« 7,0% 4 (1 - 7,) 0% ;

3 Trigger time step incrementation n <— n + 1;

2u until [|qu—a,/ ¢ uyuy 1D 3, 30" || Qu(n)#, 3u || = Niax:
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Update the trainable parameters of the critics:
0% + O — a Vgl (O9),

14 (@Cj) = E [Ym - Q(sm7 3~m|(")Cj)]2

(Smsam,Sm+1:rm) ED~B

Ym:rm'i"Y-m(i)I%Q S’"+1’@b/:1 Ty (Smt1|@% ) + N7 ¢ |@F
J=0,

Update the trainable parameters of the actors:
O% +— O + a, IED[VMQ (Sma D=1 {7y (5m|@au)} |®CO)
Sm

X Veuy (5m|©™)]
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The Proposed MADRL Solution
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Workflow of the Proposed DSPAC-MN Algorithm

Actors’ Gradients

The Joint Action

) e )= 5l 15005101 19, s, L s (] 6°) T 5010
ay [n] .
T —1 {7 (5m[©")}

The Shared Critic Module

The Distributed Actor Module§

Mean-Square Loss Function of Global Critic Network 9
1(©1) =B [rn + 701 (341,84 {7 (307 ) + N1 ) ~ Qo sani€)]

A4 T T A4 T T T-
Online Critic 0 Shadow Critic 0 Online Critic 1 Shadow Critic 1
o« o 5| @vren o « o | e e e

Vol (0) (1-1)0% — a:Ve:((O7) 4 (1—7,) ©F

sln] | 'wm

a[n]

| The Environment

C e ”] = {q“ N Q!?["” Global Experience Replay Buffer
sfn+1] = {qu[n + 1], Q4[n + 1]} B (s[n], a[n], s[n + 1], 7[n])

-T(( Jo) ) 5 | @ N
o Distributed Agents: explore in parallel o Modularized Inputs: balanced dimension
o Shared Critic: cooperative learning o Perturbed Actors: enhanced exploration
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Setups for System Parameters and Hyperparameters of the Learning Process

Simulation Results
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Table I: Setups for System Parameters and Hyperparameters of the Learning Process

Parameters Values Parameters Values Parameters Values
Number of terrestrial UEs |G| = 6 Number of UAVs [U| = 2 Replay buffer B's capacity B 10°

Length of time slot &, 05s Queue capacity A 5 x 107 bits Mini-batch sampler D’s size D 256

Safety distance for avoiding collision D 8m UES’ computation intensity c,, 10° cyclesit Exploration noise N Normal (0, 5)
UEs" maximum CPU-cycle frequency f * 0.5 GHz UES” maximum transmit power P* 30 dBm Exploration noise variance decaying rate 0.999/episode
UEs’ transmission bandwidth B 20 GHz AWGN variance o -90 dBm Staggered policy renewal frequency N g 2

Computation overhead ¢ 2 UAVS’ computation intensity ¢, 10° cyclesbit Shadow policy tempering noise N Normal (0, 1)
UAVs’ CPU-cycle frequency budget f* 10 GHz New task instances’ variance A, 2 x 107 bits Outboundlcollsion penalty po/pe 100; 100
Minimum/maximum UAV speed v~ /v* 10 m/s; 50 m/s UAV altitude zq, 200 m Dropout rate for online actors/critics

UEs’ effective capacitance coefficient v, 107+ UEs’ non-CPU power cost E* 0 Joule Learning rates cvg /ore

UAVS’ effective capacitance coefficient ~y, 10°* UAVS’ non-CPU power cost 7% 0 Joule Critic's/actors’ Exponential leaming rate scheduler factor

Fuselage drag ratio go/Rotor solidity ¢, 06; 0.05 Air density o, 1.225 kg/m® Discount factor ~; Parameter-wise noise variance o2

Rotor disc area g, 0503 m? Blade angular velocity o, 300 radians/s Polyak averaging coeffcint 75

Rotor radius o; 04m Profile drag Coefficient o 0012 Maximum training episodes ¢€pax

Incremental correction factor to induced power o; UAV weight o 20 Newton Step threshold Ny

Average rotor induced velocity v, 403 ms Rotor blade tip speed v, 120 m/s Direction-aware collision penalty triggering factor T

Relaive pressure 1013.25 hPa Carrier frequency of THz channel fo | 03 THz Dimension of each module’s output | M,

Speed of light C 3 x 10° mis Antenna gains G, /G - 20 dBi; 0 4Bi Number of modules inside each actor

Relative humidity; Energy regulation factor 5% 0.5;0.02 Relative temperature Number of modules inside the shared cirtic
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Simulation Results
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Average Energy Efficiency versus Training Episode
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The Proposed DSPAC-MN Algorithm
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MADDPG: an extension of deep deterministic policy

gradient (DDPG) to handle multi-agent scenarios

MATD3: an extension of twin-delayed DDPG (TD3)

to reduce overestimation bias of MADDPG

DSPAC-MN-NM: DSPAC-MN without modular net-

works

DSPAC-MN-NR: Regularization-less DSPAC-MN
DSPAC-MN-NL: DSPAC-MN without learning rate

scheduling

DSPAC-MN-B32: DSPAC-MN with batch size of 32

DSPAC-MN-F200: DSPAC-MN with policy renewal

frequency of 200
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Simulation Results
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Violin Plot versus Episode Segments
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o The metric is measured in bits/wJoule, where
wlJoule accounts for a weighted sum energy
consideration, ensuring magnitude fairness be-

| tween computation/offloading and propulsion

energy costs.
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The proposed DSPAC-MN significantly out-
| . performs other baselines, demonstrating its
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Simulation Results
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Average Safe Flight Probability

09-

o A safe flight criterion is violated if any UAV flies
out of bounds or if any pair of UAVs collides.

o The proposed DSPAC-MN approach is the only
method achieving 100% safe flight naviga-

Average Safe Flight Probability (%)
°

04- . . . . . .
S ey P tion, while other baselines have a higher likeli-
Il DSPAC-MN-NR The Proposed DSPAC-MN Algorithm H H H _

03 AN DS R i hood of violating the rules imposed by the op
B DSPAC-MN-F200  EEE MATD3 timization problem.

02 1000 ' 10012000 2001-3000 30014000 4001-5000
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Dr. Yuanjian Li, Research Fellow at Nanyang Technological University (NTU), Singapore uanjian.li@ntu.edu.sg

Energy-Efficient UAV-Aided Computation Offloading on THz Band: A Multi-Agent Deep Reinforcement Learning Solution



Simulation Results
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Visualization of and Comparison on Devised Trajectories over Various Algorithms
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o The proposed DSPAC-MN solution generates trajec-
tories that are well-separated and clear of borders.

o Baselines such as DSPAC-MN-B32, MADDPG, and
MATD3 fail to prevent UAVs from crashing into
borders, violating mobility constraints.

o Benchmarks like DSPAC-MN-NL, DSPAC-MN-NR,
DSPAC-MN-F200, and DSPAC-MN-NM produce
trajectories that result in collisions, breaching col-
lision constraints.
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Safe Flight Probability and Designed Propulsion Speed
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Simulation Results
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Comparison on Safe Flight Probability

Algorithms MADDPG | MATD3 DSPAC-MN-NM DSPAC-MN-NR
The last 1000 episodes 0.5729 0.59992 0.73998 0.62
The last 200 episodes 0.5853 0.6015 0.74 0.62
The last 10 episodes 0.62 0.598 0.74 0.62
Algorithms DSPAC-MN-NL DSPAC-MN-B32 | DSPAC-MN-F200 | DSPAC-MN
The last 1000 episodes 0.73734 0.77556 0.90374 1.0
The last 200 episodes 0.8205 0.78 0.9905 1.0
The last 10 episodes 0.848 0.78 1.0 1.0




Simulation Results
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Thanks for your attentions
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