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Brief Overview

Brief Overview

In this presentation, quantum mechanics and deep reinforce-
ment learning (DRL) techniques are invoked to help solve intel-
ligent trajectory optimization problem for cellular-connected UAV
networks. The main contributions are summarized as follows.

® Different from the vast majority of existing literature, more practical

G2A pathloss model based on one realization of local building distribu-
tion and directional antenna with fixed 3-dimensional (3D) radiation
pattern are considered in this paper. Then, a cellular-connected UAV
trajectory planning problem is formulated to minimize the weighted
sum of flight time cost and the corresponding expected outage dur-
ation. Without prior knowledge of the wireless environment, the fo-
cused path planning problem is challenging to be tackled via conven-
tional optimization techniques. Alternatively, the proposed optimiz-
ation problem is mapped into Markov decision process (MDP) and
solved by the proposed DRL solution with novel quantum-inspired
experience replay (QIER).

Presenter: Yuanjian Li 20th March 2022 ICC 2022 — SAC-05 MLC Track



Brief Overview
Department of Engineering
Faculty of Natural, M;
King’s

Brief Overview

® A novel QIiER framework is coined to help the learning agent achieve
better training performance, via a three-phase quantum-inspired pro-
cess. Specifically, the quantum initialization phase allocates initial
priority for the newly-recorded experiences, the quantum preparation
phase generates the updated priority for the sampled transitions with
the help of Grover iteration, and the quantum measurement phase
outputs distribution of sampling probabilities to help accomplish the
mini-batch training procedure.

Presenter: Yuanjian Li 20th March 2022 ICC 2022 — SAC-05 MLC Track



System Model Department of Engineering KING'S
College
L

ng Sciences

System Model

A downlink transmission scenario inside cellular-connected UAV net-
work is considered, where a set U/ of U UAVs is served by a set B of B
BSs within cellular coverage. These UAVs are supposed to reach a com-
mon destination from their respective initial locations, for accomplishing
their own missions.! Intuitively, each UAV should be navigated with a
feasible trajectory, alongside which the corresponding time consumption
should be the shortest and wireless transmission quality provided by the
cellular network should be maintained satisfactorily.?

1For example, one typical UAV application case is parcel collection. Various UAVs are launched from different
costumers’ properties carrying parcels to the local distribution centre of delivery firm. Besides, collision avoidance
during UAVs' flights needs to be guaranteed, via separating UAV's operation spaces and keeping their flying altitudes
higher than the tallest building.

This paper concentrates on UAV navigation task within coverage of cellular networks, while global positioning
system (GPS)-supported UAV navigation is beyond the scope of this paper and left as one of future research directions.
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System Model

Without loss of generality, an arbitrary UAV (denoted as u hereafter) out
of these U drones are concentrated for investigating the navigation task.3
For clarity, the UAV's exploration environment is defined as a cubic sub-
region A : [Zio, Zup] X [Yio, Yup] X [Zi0s Zup], Where the subscripts "lo" and
"up" represent the lower and upper boundaries of this 3D airspace, re-
spectively. Furthermore, the coordinate of the focused UAV at time ¢
should locate in the range of gio =< Gu(t) < Gup, Where Gio = (210, Yio, 210),
Gup = (Tup, Yup, 2up) and =< denotes the element-wise inequality. The initial
location and the destination are given by ¢, (I) € R'*3 and ¢, (D) € R**3,
respectively. Therefore, the overall trajectory of this UAV's flight can be
fully traced by ¢, (t) = (4 (t), yu(t), 2. (t)), starting from g, (I) and end-
ing at ¢, (D). Besides, the location of arbitrary BS b € B is indicated as
@ = (Tb, Yb, 26), Where dio < Gb = Qup-

3 . . . .
These UAVs share the same airspace and common location-dependent database, which means that the trained
DRL model can be downloaded by the remaining UAVs, helping them accomplish their navigation tasks.
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Antenna Model

In compliance with BS's antenna modelling of current cellular
networks, directional antenna with fixed 3D radiation pattern is as-
sumed to be equipped at each BS. Following standard sectorization,
each BS is portioned to cover three sectors. Therefore, there are
3B sectors in total within the interested airspace A. Specifically,
it is assumed that three vertically-placed M-element uniform linear
arrays (ULAs) are equipped by each BS with boresights directed to
their corresponding sectors covered by this BS, subject to the 3GPP
specification on cellular BS’s antenna model.
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Antenna Model
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Figure 1: Demonstration of ULA’s coordinate system and vertical radiation pattern
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Pathloss Model

Different from terrestrial transmissions, G2A links are more
likely to experience LoS pathloss. In this subsection, the adopted
G2A channel model will be interpreted.

According to 3GPP urban-macro (UMa) pathloss model, the
G2A pathloss in dB from sector i to the UAV at time ¢ is given by

il _ [28.0+22logyg (diy) +201logig (fe) if LoS
PL 7w (] = {—17.5 + [46 — Tlogyg (2w (£))] 10810 (div) + 20 log; o (4“ng) ifNLs’ M
where d;, = ||qu(t) — G||2 outputs the Euclidean distance between

the UAV and the location of ULA for sector 3.
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Pathloss Model

To practically trace the type of G2A pathlosses, building dis-
tribution in the interested airspace A should be taken into consid-
eration. Fig. 2 illustrates an example of local building distribution,
including their horizontal locations on the ground and heights (Fig.
2a), as well as the corresponding 3D view (Fig. 2b). With given
building distribution, the type of large-scale pathloss of G2A chan-
nels for UAV at arbitrary location g,(t), i.e., LoS or NLoS in (1),
can be accurately determined via checking the potential blockages
between the UAV and sectors.*

4
Note that our method generating G2A pathloss is more practical than the widely-used probabilistic G2A
channel model in current literature because the later can only characterize the average G2A pathloss rather than its
real counterpart.
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System Model

In short, the corresponding optimization problem is stated as

(P1): muin 72 Z Z ITOP{Gu(n), i(m)h(2)} + N, (2a)

st. i(n) = ~ argmin PL![7,(n)], (2b)
i€{1,2, ,3B}

T+ 1) = @) + V(). [3u(m)]) = 1, (20)

Gio = Ju( ) Qup iu(0> = Qu(I)vJu(N) = (Tu(D)a (2d)

where 7 is the weight balancing the minimization dilemma, V,, rep-
resents the UAV's flying velocity and #,(n) specifies the mobility
direction. The constraint (2b) holds because the sector association
strategy is dependent sorely on pathlosses from all the sectors within
each time slot and it is clear that the UAV should always pair with
the sector which can offer the least degree of pathloss.
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Quantum Basics

Quantum State

In quantum mechanics, a quantum state of a closed quantum
system can be described by a unit vector in Hilbert space. Specific-
ally, a quantum state |¥.) (Dirac notation) comprised of 72 quantum
bits (qubits®) can be expressed as A
~
11...1

W) =T @|T) @ @)= > Mlp), ()
p=00...0

where |¥.) , e € [1, 7] represents the e-th qubit, i, means the com-
plex coefficient (i.e., probability amplitude) of eigenstate |p) subject
to Z;Laémo|hp|2 = 1 and ® denotes the tensor product. The
representation of n-qubit quantum state |U,) follows the quantum
phenomenon known as state superposition principle. That is, the
|U.) can be regarded as the superposition of 2" eigenstates, ranged
from |00...0) to |11...1).
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Quantum Basics

Quantum State

As a special case, a two-eigenstate quantum system (say, a
single qubit) can be described as an arbitrary superposition state of
eigenstates |0) and |1), given by

W) = a|0) + 5 1), (4)

where the complex coefficients & = (0|¥) and 5 = (1|¥) denote the
probability amplitudes for eigenstates |0) and |1), respectively. Note
that the single-qubit superposition |¥) is a unit vector (i.e., (V|¥) =
1) in Hilbert space spanned by orthogonal bases |0) and |1), subject
to |a|? + |82 = 1. According to quantum collapse phenomenon,
after measurement or observation of an external experimenter, |¥)
will collapse from its superposition state onto one of its eigenstates
|0) and |1) with probabilities |a|? and |3|?, respectively.
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Quantum Amplitude Amplification

For a two-eigenstate qubit |U), the probability amplitudes of
each eigenstate can be changed via a quantum operation (e.g.,
Grover iteration), gradually modifying the collapse probability dis-
tribution. Two unitary reflections are applied to achieve Grover it-
eration, given by

Ujgy =1~ (1—¢*)0) (0], (5)

Uy = (1 — ) [¥) (T — (6)

where {¢1,¢2} € [0,27], I indicates identity matrix, and (0| and
(¥| are Hermitian transposes of |0) and | ), respectively. Then, the
Grover iterator can be formulated as G = U U gy, which remains
unitary. After m times of acting G on |¥), the two-eigenstate qubit
with updated probability amplitudes can be given by |[¥) < G™ | V) .
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Quantum Amplitude Amplification

Two updating approaches can be used to accomplish quantum
amplitude amplification task: 1) m = 1 with dynamic parameters ¢
and ¢s; and 2) dynamic m with fixed parameters ¢; and ¢2 (e.g.,
7). The latter updating method can only change the probability
amplitudes in a discrete manner, and thus the former solution is
chosen in this demonstration.

Proposition

For Grover iteration with flexible parameters, the overall effects of G
on the superposition | V) can be derived analytically as G | V) = (Q—
e7)a|0) +(Q—1)B 1), where @ = (1—€7%2) [1 — (1 — €391)|o?]
and |(Q — &/?)]?|af* + [(Q - DP’|B* = 1.
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Proof.

The effects of U)oy on |0) and |1) are expressed as

U)oy 10) = [1 — (1 - &M%y )0y <o@ 10y = €71 |0y, @)
Ujoy 1) = [T = (1= &7#1) |0) (0l] 11) = 1), ®)

respectively. Then, we obtain
Ujoy 19) = [T = (1= &7%1) |0) (0] |%) = e/%1a|0) + B11), ©)

where U|0> plays the role as a conditional phase shift operator.
Furthermore, we get
GI¥) =U|q)Ugy [¥) = (1 — e/#2) [a]0) + 8 1)] [af (01 + 8T (1] U)oy 1) — U gy 1¥)
=(2-e*Nal0) +(2-1)B 1), (10)
where © = (1 — €992)(e391 |a|? 4 |BI?) = (1 — e#%2) [1 = (1 = 3#1) 2],

Because Grover operator G is unitary, the updated superposition |¥) <— G |¥) still follows the normalization rule
of probability amplitudes, i.e., |(Q — eJ¢1)\2|a\2 +1(Q — 1)\2\5\2 =1. O
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Corollary

The ratio between collapse probabilities of |V) — |0) before and
after being impacted by G can be given by |R|?> = |(1 —el®1 —
e192) —(1—ei?1)(1—eI?2)|al?|?, which is symmetric w.r.t. ¢, = ¢
and ¢1 = 2w — ¢o. Then, the updated collapse probabilities onto
eigenstates |0) and |1) can be given by |R|?|a|? and 1 — |R|?|a|?,
respectively.

Proof.

Based on (4) and (10), the ratio between the probability amplitudes
of |0) after being acted by G and before that can be derived as
R = (1—el% —ei?2) — (1 — /1) (1 — e7%2)|a|?, which completes

the proof. O
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Quantum Basics

The proposed QIiER framework consists of the following three
phases.

® Quantum Initialization Phase: When transition exp; is stored into
the QIER buffer with finite capacity C, a label k € {1,...,C} will
be assigned to exp;, which specifies the location of exp; being re-
corded within the QIiER buffer.® Then, experience exp; and the k-th
qubit |¥y) together will be stored into the QIiER buffer, which can
be regarded as a collection of (exp;, |¥)). When a new transition is
recorded into the QIiER buffer and before being sampled out to feed
the training agent, its associated qubit |¥}) should be initialized as
eigenstate |0), i.e., |¥x) < |0). The reason is that the agent has
never been trained with these un-sampled transitions that may have
unimaginable potentials to help the agent learn the characteristics of
environment with which the agent is interacting. Thus, we set these
newly-recorded transitions with the highest priority, encouraging the
agent to more likely learn from them.
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® Quantum Preparation Phase: After an experience is sampled from the
QIER buffer to train the agent, the quantum preparation phase should
be performed on its associated qubit, updating the corresponding
priority. This is due to two reasons: 1) the TD error of this transition
is updated; and 2) the experience becomes older for the agent.
The uniform quantum state is defined as

V2

= X20) +11)). (11)

+)
The absolute value of TD error |§;| is chosen to reflect priority of the
corresponding transition exp;. Once a recorded transition is sampled,
its associated qubit |¥) should first be reset to the uniform quantum
state, i.e., |Ug) < |[+).
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Then, to map the updated priority of exp; into |¥x), one time
of Grover iteration with flexible parameters will be applied on the
uniform quantum state, shown as

P20+ P-1) 2. (12)

a

Vi) =UnyU |+)

where P = (1 — e/%2) [1 — 0.5(1 — €7?*)] and the derivation (a) is
based on Proposition 1.
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® Quantum Measurement Phase: After the QIiER buffer is fully oc-
cupied by recorded transitions, a mini-batch of experiences will be
sampled to perform network training for the agent, via standard gradi-
ent descent method. To prepare the mini-batch sampling procedure
under constraint of priorities, quantum measurement on the associ-
ated qubits should be accomplished first. Specifically, the probability
of the k-th qubit collapsing onto eigenstate |0) can be calculated
as | (0|Tx)|?>. Then, the probability of the corresponding experi-
ence being picked up during the mini-batch sampling process can be
defined as bpy = | (0]¥) |2/ 5, | (0|W.) 2, in which the denom-
inator means the sum of collapse probabilities onto eigenstate |0) of
qubits that are associated with all stored experiences.
During the mini-batch sampling period, several times of picking re-
corded experiences from the QIiER buffer will be executed, following
the generated picking probability vector b;) = [bp1,bpa, . .., bpc] after
quantum measurement phase. Note that the total sampling time is
equal to the size of mini-batch, which will be specified in the numer-
ical result section later.
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Remark

Although the QIER buffer involves quantum representations and opera-
tions, the corresponding processes, i.e., the quantum initialization phase,
the quantum preparation phase and the quantum measurement phase, can
be imitated on conventional computing devices without implementing real
quantum computations on practical quantum computers.

Remark

The associated qubit of sampled experience should be reset to the uniform
quantum state, which means that the corresponding quantum preparation
phase starts from the uniform quantum state rather than the previous coun-
terpart. This is in line with the quantum phenomenon where a quantum
system will collapse onto one of its eigenstates after an observation. Note
that the sampled transitions are still remained in the QiER buffer until they
are discarded.
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Algorithm 1: The Proposed DRL-QIER Solution

ize the online D3QN network Q p3 (s, a|@p3) and its target network Q p3 (s, a|@p,,), with 87, < @pg. Initialize the QIER buffer R

Initialization: In
with capacity C. Initialize the vector of replay time as 7t = [r'ty, rta, ..., rtg] = 0. Set the size of mini-batch as N,,,. Set the order index of R as
k = 1. Set the flag indicating whether the QIER buffer is fully occupied or not as LF = False. Set the maximum TD error as dmax = 1;

for te 1, temax] do

Set time step 7 = 0. Randomly set the the UAV's initial location as G, (n) € S. Initialize a sliding buffer R with capacity Ny s:

repeat

Select and execute action @y, , then observe the next state ¢, (n + 1) and the immediate reward r,, = r,,[q, (n + 1)];

if LF == True then
Perform quantum measurement on all stored experiences’ qubits and get the vector of their replaying probabi
[bp1, bpa, ..., bpcl:
for nyy = [1, Ny do
Sample a transition according to [bp1, bpa, . . . , bpc] and get its location index d € {1,2,...,C};

Reset the d-th qubit back to uniform quantum state |¥,;) =

Update the corresponding replay time 7t,+ = 1 and rtmax = max(7t);
Calculate the sampled transition’s absolute Ny s-step TD error |8y, | and update the maximum TD error Smax =

e D

Perform quantum preparation phase on the d-th qubit;

max(dmax, |8

end
Update the online D3QN network @ ps (s, a|6 p3) via gradient descent method using the mini-batch of sampled N, transitions
from R
end
Get and record transition exp,, = {gu(n), an, rn, @u(n + 1)} into R;
ifn > s then
Genevate the Ny g-step reward 7, . from R and record Nyps-step experience exp,_n, . = {Tu(n —
Nowi)s @y N, oo @u ()} into R with order index k;
Perform quantum initialization phase on the k-th qubit as [¥).) = |0). Reset 7t = 0 and let k+ = 1;
if k > C then
| Set LF = True and reset k
end
end
Let nt = 1;

until Gy (n) = qu (D) || Gu(n) € S || n = Nmax;
Update € + € X dece. Update the target D3QN Qp3 (s, a|6p,) every Y g episodes,

“ Ops;

D3
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Figure 3: Flow chart of the proposed DRL-QIER algorithm
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Simulation Parameter Settings

Table 1: Parameter Settings for Simulation Environment

S
ilege
LONDON

Parameters | Values || Parameters | Values
Amount of BSs B 4 Amount of sectors 3B 12
Horizontal side-length of A D 1 km Amount of each ULA's array elements M 8
Half-power beamwidth © 345 /P 348 65°/65° Speed of light ¢ 3 x 108
m/s
Carrier frequency fc 2 GHz Wave length X\ 15/cm
ULA's element spacing distance d,, 7.5 cm ULA'’s electrically titled angle 047+ 100°
Antenna height of BS 25 m Flying altitude of UAV 100 m
ITU building distribution parameter & 0.3 ITU building distribution parameter B 118
ITU building distribution parameter ¥ 25 Total amount of buildings [‘}DQ 118
Expected size of each building d/B 0.0825 Maximum height of buildings 70 m
km
Transmit power of each sector P; 20 dBm Nakagami shape factor m for LoS/NLoS 3/1
Transmission outage threshold I';j, 0dB Average power of AWGN o2 -90 dBm
Duration of time slot Ay 05s Velocity of the UAV V,, 30 m/s
Amount of signal Measurements L 1000 Weight balancing the minimization 7 50
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Simulation Results

Learning Parameter Setting

Table 2: Hyper-parameter Settings for Learning Process

Parameters | Values || Parameters | Values
Capacity of QiER buffer C 20000 Size of mini-batch N,,,3 128
Initial e-greedy factor € 0.5 Annealing speed dece 0.994 /episode
Target D3QN update frequency Y p3 5 Length of sliding buffer Ny, s 30
Positive special reward rp 400 Negative special reward 7, -10000
Learning rate o, Adam'’s Discount factor 1

default
Maximum training episodes temax 2000 Step threshold Npmax 400
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Simulation Environment
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Figure 4: Simulation environment and the corresponding preview on TOP distribution
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Simulation Results

Training results of the proposed DRL-QIER solution
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Figure 5: Training results of the proposed DRL-QIER solution
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Simulation Results

Performance comparison on
designed trajectories

® Initial Location mmmm DRL-PER === DRL-QIER = Destination
—DRL-ER SNARM = DCRL

1000 -
600 -

700 -
200 -
-08

800 -

900 - 600 -4

- 0.6

dOL

1000 -

400 -}
1100 - - 0.4

Moving Average Returns

DRL-ER
—— DRL-PER 200
SNARM
—— DRL-QER
— DCRL

1200 -

1300 -

1400 -

250 500 750 1000 1250 1500 1750 2000 600 800 1000

Training Episodes X (m)

(a) Comparison on moving average returns (b) Designed trajectories of trained agents

Figure 6: Performance comparison on moving average returns and designed trajectories
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Figure 7: Performance comparison on average time costs and EOD
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Simulation Results

Thanks for your attentions

This is the end of this demonstration
Any Question?

Presenter: Yuanjian Li 20th March 2022 ICC 2022 — SAC-05 MLC Track



	Brief Overview
	System Model
	Antenna Model
	Pathloss Model
	Building Distribution
	The Considered Optimization Problem

	Quantum Basics
	The Proposed DRL-QiER Algorithm
	Flow chart of the proposed DRL-QiER algorithm

	Simulation Results

