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Next-Gen Wireless
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The History of Wireless Communications
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Mobile Network Evolution
From 0G to 6G
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Streaming, Mobile Gamin
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eMBB, uRLLC, mMTC,
Network Softwarization,
VR, AR, MR, Autonomous
Vehicles, loT, Industry 4.0

6G Requirements:

Peak Data rate > 1 Tbps, End-to-end delay < 0.1

Ims, Processing delay < 10 s, Reliability >

109.99999%, Availability > 99.99999%, Connection

IDensity > 107 Devices/km2, Energy Efficiency > 100x
ver 56, Spectrum Efficiency > 5x over 56, Mobility >

1000 kmph

/6G Vision: FeMBB, umMTC, eRLLC/eURLLC, ELPC,
ILDHMC, High Spectrum Efficiency, High Area Traffic
(Capacity, MBBLL, mLLMT, AEC

[6G Enablers: THz Spectrum, Al and Federated
lLearning, Compressive Sensing, Blockchain/DLT,
{Swarm Networking, Zero Touch Network and Service
Management, Efficient Energy Transfer and
Harvesting, Smart Surfaces, NTN Towards 3D

ing, VLC, Quantum C i

[6G icati UAV, i P 3
[Extended Reality, Collaborative Autonomous Driving,
[Internet of Everything, Smart Grid 2.0, Industry 5.0,
Hyper-intelligent IoT, Collaborative Robots,
Personalized Body Area Networks, Intelligent
Healthcare, Space and Deep-Sea Tourism

C. De Alwis, A. Kalla, Q.-V. Pham, P. Kumar, K. Dev, W.-J. Hwang, and M. Liyanage, “Survey on 6G frontiers: Trends, applications, require- ments,

technologies and future research,” IEEE Open J. Commun. Soc., vol. 2, pp. 836-886, 2021.
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The Next-Gen (6G) Wireless Systems

Global coverage
Satellite and UAV communications
Terrestrial communications
Maritime communications

Underwater, underground
communications

Full applications
Integration of communications, 6G

computing, storage, control, sensing, . o
localization, robotics, Al, and big data Vls“)n

Terminal-network-cloud
Cloud/fog/edge computing

All digital
Digital twins: mapping between
physical world and virtual world

Intelligent connection of “human-

-thing vir t”

All spectra

Sub-6 GHz (including short wave and
acoustic wave)

cmWave + mmWave + THz
Optical wireless

All senses
Holographic communications/storage

Truly immersive XR: fusion of
virtuality and reality

Tactile Internet

Strong security

Physical layer security and network
layer security

Reliable communications
Intelligent endogenous security

C.-X. Wang, X. You, X. Gao, X. Zhu, Z. Li, C. Zhang, H. Wang, Y. Huang, Y. Chen, H. Haas et al., “On the road to 6G: Visions, requirements, key
technologies, and testbeds,” IEEE Communications Surveys & Tutorials, vol. 25, no. 2, pp. 905-974, 2023.
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Next-Gen Wireless
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Why UAV-Aided Network?

—— LoS A2G Link
******* NLoS A2G Link

huav

dZD

Dr. Yuanjian Li, Research Fellow at Nanyang Technological University (NTU), Singapore

o

o

o

o

Enhanced coverage and connectivity

More likely to establish line-of-sight
(LoS) air-to-ground (A2G) wireless
links due to high altitude

Configurable mobility and on-demand
deployment

Support for loT & smart applications

Email: yuanjian.li@ntu.edu.sg
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Some Examples of UAV-Assisted loT Application Scenarios

Smart City

Disaster and Emergency Agriculture

* Surveillance

* Delivery

« Intelligent transportation
system

SN. Cheng, S. Wu, X. Wang, Z. Yin, C. Li, W. Chen, and F. Chen, “Al for UAV-assisted loT applications: A comprehensive review,” IEEE Internet
Things J., vol. 10, no. 16, pp. 14 438-14 461, 2023.
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Cellular-Connected UAV Navigation
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What is Cellular-Connected UAVs Networks?

5 5

\Aa\o
eX
Laby Suor® Served b
ser Weaker Sidelobe

Dr. Yuanjian Li, Research Fellow at Nanyang Technological University (NTU), Singapore

Beyond visual and radio LoS (BVR-
LoS) communications

Reuse cellular networks thus cost-
effective

Compensate GPS coverage for better
UAV navigation

Main lobes of terrestrial base stations
(BSs) are downtitled towards ground

UAVs can be served by side lobes

Email: yuanjian.li@ntu.edu.sg
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The Cellular-Connected UAV Environment
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Cellular-Connected UAV Navigation
©0®0000

What is Reinforcement Learning and How It Works?

ChatGPT Tesla Autopilot AlphaGO oo

Qu(s am) = E[tho Yiruer1]so = s, a0 = a, ﬂ'}
RL t .
asen To find the optimal polity 7 that can maximize
S —— the long-term accumulated discounted rewards Q.
State s, | | Reward r, (s;,q,) Action g,
o State (s:): Agent's current state
Si+1| Environment o Action (a;): Agent's selected action

o Reward (r;): The feedback from the

Reinforcement learning works by allowing an agent environment based on the action taken

to | timal behavior th h trial and ,
o learn optimal behavior through trial and error o Next State (s:+1): The next state the

receiving feedback in the form of rewards from its agent would be in

environment to achieve intelligent decision making.

Dr. Yuanjian Li, Research Fellow at Nanyang Technological University (NTU), Singapore uanjian.li@ntu.edu.s
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Cellular-Connected UAV Navigation
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The Proposed Quantum-Enhanced Deep Reinforcement Learning Algorithm

. Sample Mini-Batch
, The QIiER Buffer [-> D3QN Agent

Quantum M[:ialsure;?tent Phase Batch Training on
on $Qu 1S the Agent Tn
Quantum Initialization Phase Sample A Transition Stored at "
on the k-th Qubit, i.e., the d-th Location to Compose Update TD error Environment
|W;) = |0) the Mini-Batch l
X e, I
Reset the d-th Qubit to the Gu(n)  Gu(n+1)
Initial Quantum State Quantum Preparation
. 8 Phase, i.e., —
\ Newlty-ll]leio:':eii Tr?nsltlan The Replay Time (?fthe [Wa) =U U)o |+) / Store Transition €2Pn = {Gu(1), @n,mn, Gu(n +1)}
L atthe fe-th Location Sampled Transition o into the Sliding Buffer Then Generate Multi-Step
b - Transition and Record it into the QiER Buffer

3 phases: Quantum Initialization, Quantum Preparation, and Quantum Measurement
Associate the quantum collapse distribution with the probability whether picking one particular experience sample from the buffer
QIER is short for quantum-inspired experience replay, which invokes quantum
computing to aid in DRL learning frameworks.

Dr. Yuanjian Li, Research Fellow at Nanyang Technological University (NTU), Singapore Email: yuanjian.li@ntu
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Cellular-Connected UAV Navigation
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How Quantum-Inspired Experience Replay Works?

~
S
Q)

) = “l’l\) ‘\1I2> o ‘\ph> - Zp:(‘)‘(i“_(] hp P>

o Quantum superposition: |¥) = «|0) + S |1)

o Probability amplitude: o = (0|¥), 8 = (1|¥)

o Jof2 18 =1

o After measurement, |¥) will collapse onto one
of its eigenstates |0) and |1) with probabilities
||? and |B]2, respectively.

o The idea is to use Grover iteration from quan-
tum computing to manipulate the collapse dis-
tribution
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Cellular-Connected UAV Navigation
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Training Return History and Designed UAV Trajectories
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Cellular-Connected UAV Navigation
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Performance Comparison on Ergodic Outage Duration (EOD) and Time Cost

- 440
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Algorithms
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Multi-UAV-Aided MEC
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System Model Diagram of Many-UAV-Enabled Computation Offloading for Terrestrial
loT Users

Multiple unmanned aerial vehicles (UAVs) are deployed to provide energy-limited computation-
scarce terrestrial loT user equipments (UEs) with accessible task offloading services.

() + = —— Offloading Link — Interfering Link
[ e UAV A(IBS & S UE —==% «saeep UAV Trajectories
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Multi-UAV-Aided MEC
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Mang-Agent Deep Reinforcement Learning (MADRL)-Aided Communication and
Computing Resource Coordination for Multi-Access Edge Computing (MEC) Systems

This work focuses on developing MADRL-driven strategies to optimize key performance
metrics, such as energy efficiency, in MEC systems.

N
1 d
max Ly~dl
{vuln felnl gIn], g n],Peln)} N 4= E[n]
The optimization process jointly considers communication and computation resources,
including UAVs' trajectories, UEs' local central processing unit (CPU) clock speeds,
UAV-UE associations, time slot slicing, and UEs’ offloading powers, after mapping the

original problem into a stochastic (Markov) game.

Dr. Yuanjian Li, Research Fellow at Nanyang Technological University (NTU), Singapore
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Multi-UAV-Aided MEC
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Workflow of the Proposed Duo-Staggered Perturbed Actor-Critic with Modular Networks
(DSPAC-MN) Algorithm in MADRL Setups
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The Shared Critic Module

Mean-Square Loss Function of Global Critic Network

(CRESS [ +7minQ (smin, 6l {mu (31110 ) + N} 07 ) ~Q <sm.am\e“~>] ]

a | = v [ T

‘ 4 T T
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o Distributed Agents: explore in parallel o Modularized Inputs: balanced dimension

o Shared Critic: cooperative learning o Perturbed Actors: enhanced exploration
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Multi-UAV-Aided MEC
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Return History of the Online Training Process

o MADDPG: an extension of deep deterministic policy
gradient (DDPG) to handle multi-agent scenarios

o MATD3: an extension of twin-delayed DDPG (TD3)
to reduce overestimation bias of MADDPG

o DSPAC-MN-NM: DSPAC-MN without modular net-
works

o DSPAC-MN-NR: Regularization-less DSPAC-MN
o DSPAC-MN-NL: DSPAC-MN without learning rate
—— DSPAC-MN-NL —— DSPAC-MN-NM

—— DSPAC-MN-NR DSPAC-MN schedulin g

=

w

09-

Average Energy Efficiency (Bits/wJoule)

= DSPAC-MN-B32 MADDPG
o  — osmcuvEw — wams o DSPAC-MN-B32: DSPAC-MN with batch size of 32
' T e ™ o DSPAC-MN-F200: DSPAC-MN with policy renewal

frequency of 200

Dr. Yuanjian Li, Research Fellow at Nanyang Technological University (NTU), Singapore anjian.li@ntu.edu.sg
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Multi-UAV-Aided MEC
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Box and Violin Plots of Performance Comparison on Expected Energy Efficiency
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Multi-UAV-Aided MEC
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Visualization of and Comparison on Devised Trajectories over Various Algorithms

05

o the proposed DSPAC-MN solution can generate tra-
jectories that are not only sufficiently separated from
each other but also away from the borders

o baselines DSPAC-MN-B32, MADDPG and MATD3
cannot avoid UAVs from crushing onto borders

Hotspot Origin

SPACMNE) : o benchmarks DSPAC-MN-NL, DSPAC-MN-NR,
e P HSPACMN gt DSPAC-MN-F200 and DSPAC-MN-NM design

— s ‘ ‘ ‘ trajectories that end up colliding with each other
080 01 02 03 04 05
X (km)
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THz Channel Estimation
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Why Terahertz (THz) Communications?

Frequency (Hz)
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Terahertz (THz) transmissions, operating in the 0.1-10 THz frequency range, offer the
potential for ultra-high data rates, reaching up to several Terabits per second (Tbps) with
ultra-broad spectrum blocks (bandwidth). This capability is considered a key building
block of the forthcoming 6G communications in supporting applications such as immer-
sive virtual reality (VR) and holographic communications.

Dr. Yuanjian Li, Research Fellow at Nanyang Technological University (NTU), Singapore uanjian.li@ntu.edu.sg
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Why Ultra-Massive Multiple-Input Multiple-Output (UM-MIMO) for THz Transmissions?

However, the appealing multi-Gigahertz bandwidth comes with severe propagation at-
tenuation due to substantial atmospheric and spreading losses from molecular absorption
and high carrier frequency, respectively. An emerging solution to broadening THz trans-
mission coverage is ultra-massive multiple-input multi-output (UM-MIMO) technology,
which offers high-level array gain to compensate THz propagation losses by forming

pencil-thin directional radiation beams.
90° 90°

uanjian.li@ntu.edu.s,
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An Example of the Large-Scale Path Loss Model on the THz Band

Distance
| c 1 ’
PL [ d, f} - p [

($
C
Carrier Frequency T

Molecular Absorption Coefficient

the volume of the mixing ratio of water vapor

Distance-Dependent and Frequency-Selective!
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Attenuation versus Frequency for the Different Weather Conditions

20

—Sand (Visibility = 100m)
——Fog (Visibility = 100m)

—Rain (Rainfall = 20mm/h) |
[[=—Molecular absorption (altitude = 10km)

—_
[¢;]

Attenuation (dB/km)
o >

0 L . "
200 300 400 500 600 700 800
Frequency (GHz)

Han, Chong, et al. "Molecular absorption effect: A double-edged sword of terahertz communications.” IEEE Wireless Communications (2022).
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Machine Learning (ML)-Enabled Channel Estimation for Terahertz (THz) Ultra-Massive
Multi-Input-Multi-Output (UM-MIMO) Communications

To facilitate efficient THz communications, UM-MIMO systems that provide substantial
beamforming gains are essential. However, tailored channel estimation solutions are
necessary to fully leverage UM-MIMO for THz transmissions. This involves practical
modeling of the near-field propagation characteristics, molecular absorption, and scatter
reflection effects. To address challenges such as angular-domain energy spread and the
beam split effect, a dictionary learning framework that creates an adaptive sparsifying
matrix from the THz channel dataset is proposed. Then, a Bayesian learning channel
estimation solution is adopted. Furthermore, a model-driven deep learning approach is
introduced, which unrolls iterative algorithms into a finite-length, layer-wise deep neural
network designed to learn the sparse representation of the THz channel from the THz
channel dataset and received pilot signals.

Dr. Yuanjian Li, Research Fellow at Nanyang Technological University (NTU), Singapore Email: yuanjian.li@ntu.edu.sg
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Array-of-Subarray (AoSA)-Based UM-MIMO Architecture

[ IRE N sA I AoSA | o Each subarray (SA) comprises Ngy = N x M
radiating elements (REs), antennas

o The amount of SAs is denoted by Ngp = Nx M

o The AoSA consists of A = NgaNga anten-
nas/REs in total

o RE displacement Drg = Ac/2 in each SA

o SA displacement Dgy = wDRg, where w>> 1

Dr. Yuanjian Li, Research Fellow at Nanyang Technological University (NTU), Singapore Email: yuanjian.li@ntu
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Partially-Connected Hybrid Combining Scheme

o An energy-efficient hybrid combining strategy
are implemented at the AoSA, where REs in each
SA share the same RF chain via dedicated ana-

«— RF Chain
log combiner, in a partially-connected manner,
: : i.e., the amount of RF chains Ngp = Ngy < A.
Ngr Nir AI:ligg o Following each RF chain, an analog-to-digital

Combiner; converter (ADC) is adopted to sample and quan-
; tize the analog waveform, transforming it into
digitalized data for baseband signal processing.

-« RF Chain

o The fully-connected hybrid combining architec-
ture: Nrrp X A RF links, while the partially-
connected strategy: A links.

Email: yuanjian.li@ntu
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AoSA-Based UM-MIMO with Partially-Connected Hybrid Combining

o ¢y € [—m 7] is the azimuth angle-of-arrival
(AoA) and 0, € [—0.5m,0.57] is the elevation
AoA of the propagation path from the -th scat-
ter to the AoSA's origin

o The location of the Fth scatter is
1; = r[sin(6;) cos(¢y), cos(6;), sin(8;) sin(¢y)] ,

where r;, ¢; and 6, are measured w.r.t. the AoSA
origin, i.e., the (1,1)-th SA’s origin.
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and Far-field Radiation Regions

Near-field Far-field .

Spherical wave f Planar wave

/ T <
\\. Rayleigh distance v

/ 2022 |
g Y -
The Fraunhofer (Rayleigh) distance is commonly adopted to distinguish near-field and
far-field regions, which is given by Dy = 2D2A/)\C and is increased with the aperture
of the antenna array and the operating frequency, where Dy denotes the AoSA's array
aperture, i.e., the diagonal length of the AoSA. If the receiver is located inside the
Fraunhofer distance from the radiating unit, the near-field radiation characteristics should
be considered and the wavefront has to be modelled as spherical.

—Il —

—- --.

Cui, Mingyao, and Linglong Dai. "Channel estimation for extremely large-scale MIMO: Far-field or near-field?.” IEEE TCom 70.4 (2022): 2663-2677.
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Hybrid Near- and Far-Field THz Transmission

® The UE (Scatter 1) ® Scatter 3 @® Scatter5
® Scatter 2 Scatter 4 ® AoSA's Origin

o In the multi-path propagation from the UE to

8 the AoSA, there might be some scatters in the
N 6 far-field, while some in the near-field.
3
,‘__% ¢ o Therefore, the hybrid-field THz radiation is con-
= 2 sidered, where the overall THz channel consists
0

of portions of near- and far-field paths.

uanjian.li@ntu.edu.sg
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How Deep Unfolding Works?

1V V:y0Y]

The training process aims to minimize the loss function, i.e., ming A [XV,X*] , in which
A[-,-] is the loss function, ® = {@®', @2 ... @} denotes the set of each layer's
trainable parameters, V measures the number of layers, x* represents the ground-truth
channel vector, x¥ = (IV<--- P aM)[x%; y|®Y,--. ,©% O] captures the final output
of the deep unfolding network after V-layer inference, and the symbol < indicates the
feed-forward process.
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Training History of Batch-Delayed Online Dictionary Learning (BD-ODL)

[— Regular-Sized Dictionary (G = A) === Overcomplete Dictionary (G = 2.25A) ]
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Element Modulus Curves versus Vector Index (Square Dictionary)

Sparse Representation by DFT-Based Dictionary (G = A)
3.0 | —— Sparse Representation by BD-ODL-Designed Dictionary (G = A)
—— Unsparsified Channel
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Cumulative Distribution Function (CDF) of the ¢, Norms of the Sparse Representations
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For instance, 90% of the THz channel samples can be recovered by less than 44 or
72 atoms from the BD-ODL-designed or DFT-based dictionaries in the case of square
dictionary, respectively. Note that the number of antenna element is 1024!
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Normalized Mean Squared Error (NMSE) versus Pilot Length

NMSE (dB)

o LS: The lease square (LS) estimate.

0 o MMSE: The minimum mean square error (MMSE)
—— ) estimate.

—a— S —e— BD-ODL BL Pruned 1e-10 ®-- FISTA . . .
—— MMSE  —— DFTBLPunediet0  —— FOCUSS o FOCUSS: A typical sparse signal reconstruction al-
-e- BD-ODLBL —— BD-ODL BL BCRB UAMP-SBL

gorithm that is popular in image recovery.

- mk‘\‘\h‘_—‘ o UAMP-SBL: The approximate message passing

- (AMP) technique with unitary transformation is used
to alternate the original E-step in SBL to reduce com-
putational cost and enhance robustness.

100,

o FISTA: The fast version of iterative shrinkage-
thresholding algorithm (ISTA) which offers compu-
tational simplicity and global convergence rate.
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What is Quantum Machine Learning (QML)?

QML refers to a small-scale quantum circuit with a classical optimizer, in the noisy
intermediate-scale quantum (NISQ) era.

U ( 9) /7( classical
optimizer

average

A high-level description of the quantum machine learning design methodology. A para-
metric quantum circuit (PQC) implementing a unitary matrix U(f) is optimized via its
vector of parameters, 6, based on measurements of the output of the PQC.
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What is Quantum Machine Learning (QML)?

optimizing a standard machine learning model,

such as a neural network, using a classical
optimizer to minimize a cost function over |0) [¢(x,0)) ,
. . U( 9) , /7( classical
parameters # based on classical input data x. +—U(x, 7 optimizer
average

implements a unitary transformation U(x, ) with
the classical input x, and parameter 60

the quantum circuit's input is a set of qubits in
|0), leading to |1(x,8)) = U(x, 8) |0)

minimize the cost function over # as per the es-
timate of an observable of the output quantum
state |¢(x,0))
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Typical Quantum Gates

Gate Name Unitary Matrix Gate Symbol
Pauli’s X X = [ (1) (1) ]
Pauli’s Z Z = [ (1) _01 ]
Pauli’s Y’ Y =iXZ= [ ? Bi ]
Hadamard H=2 [ 1 _11 = 5(X+2)
Rotation (around y axis) R,(6) = [ g’rf((gg; _Oslsr(lé%? ] Ry(9)

1000
Controlled Not (CX) g (1) 8 (1)
0010
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An Example of Quantum Neural Network

Parameterized Quantum Circuit (PQC) Classical Layer

.................................................................................................. [

0= H — Ry(fy) — T Ry(0s) = Ry(6s)

|0) — H"‘ R,(f>) *- R,(61) 'r Ry(66)
01— R Ra6 e

00~ H ~ Rfa) — Ry(63) ~8—— Ry(85)

Encoding Measurements

Kundu, Satwik, and Swaroop Ghosh. “Security Concerns in Quantum Machine Learning as a Service.” arXiv preprint arXiv:2408.09562 (2024).
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Why Quantum Machine Learning?

® Quantum supremacy reported by IBM and Google, and the latest Nobel prize in
Physics for ground-breaking experiments with quantum entangled particles, further
reveal the promise and importance of quantum computing for leading the next
industrial revolution.

® Quantum Machine Learning (QML) merges quantum computing with machine
learning, leveraging entanglement and superposition for more efficient data pro-
cessing.

® Quantum computing is beneficial for improving efficiency and enhancing general-
ization for ML systems, e.g., comparable or better learning performance with much
lighter parameter updating of quantum DRL algorithm.
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The Long-Term Interdisciplinary Vision!

\% |Wireless) + 3 [ML) + % |Quantum
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The End

Thanks for your attentions

This is the end of today's talk
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