
1994 IEEE WIRELESS COMMUNICATIONS LETTERS, VOL. 10, NO. 9, SEPTEMBER 2021

Intelligent Trajectory Planning in UAV-Mounted Wireless Networks: A
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Abstract—In this letter, we consider a wireless uplink trans-
mission scenario in which an unmanned aerial vehicle (UAV)
serves as an aerial base station collecting data from ground
users. To optimize the expected sum uplink transmit rate with-
out any prior knowledge of ground users (e.g., locations, channel
state information and transmit power), the trajectory planning
problem is optimized via the quantum-inspired reinforcement
learning (QiRL) approach. Specifically, the QiRL method adopts
novel probabilistic action selection policy and new reinforcement
strategy, which are inspired by the collapse phenomenon and
amplitude amplification in quantum computation theory, respec-
tively. Numerical results demonstrate that the proposed QiRL
solution can offer natural balancing between exploration and
exploitation via ranking collapse probabilities of possible actions,
compared to the traditional reinforcement learning approaches
that are highly dependent on tuned exploration parameters.

Index Terms—UAV, trajectory planning, quantum computa-
tion, quantum-inspired reinforcement learning (QiRL).

I. INTRODUCTION

UNMANNED aerial vehicle (UAV) has been recognised as
a promising technique to facilitate wireless communica-

tions in recent years, due to its delightful advancements such
as flexible mobility, on-demand deployment and cost effective-
ness [1], [2]. Compared to terrestrial wireless communication
scenarios, one of the most notable features of UAV-mounted
wireless networks is the controllable adjustments of UAV’s
flying trajectory, which can offer favourable wireless channel
quality [3]. To solve optimal trajectory planning problem of
UAV-based networks, reinforcement learning (RL) has been
leveraged, for its ability to learn in a “trial-and-error” manner
without explicit knowledge of the environment [4], [5].

Balancing exploration and exploitation remains the inher-
ent challenge of RL-based intelligent systems, which poses
significant impacts on learning efficiency and quality, e.g.,
ε-greedy and Boltzmann action selection strategies [6]–[8]. On
one hand, ε-greedy method renders that a random action is
executed with probability ε ∈ [0, 1], and the optimal action is
selected with probability (1 − ε) according to the developed
action selection policy. This method is simple and effective.
However, one of its drawbacks is that it selects uniformly
among all possible actions while exploring, which means that
it cannot distinguish the next-to-optimal action from other
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possible counterparts. On the other hand, Boltzmann (or the
Softmax) exploration method introduces an action selection
probability exp(Q(s, a)/τ)/(

∑
i exp(Q(s, ai )/τ)) based on

the Q function Q(s, a) of state s and action a, where the
parameter τ represents the temperature in the Boltzmann dis-
tribution. However, finding a good τ which can properly
balance exploration and exploitation is difficult. The param-
eters ε and τ pose significant impacts on the convergence
performance and the quality of learning output, which makes
it necessary to develop new action selection strategy for RL.

Recently, with the advancement of quantum computation
techniques, it is believed to be a promising direction to adopt
quantum mechanism into the field of machine learning [9].
Dong et al. [6] proposed the concept of quantum reinforce-
ment learning (QRL), in which QRL was applied to solve the
typical grid-world problem. Thereafter, in [10], Dong et al.
introduced quantum-inspired reinforcement learning (QiRL)
into the field of navigation control of autonomous mobile robots.
Fakhari et al. [11] applied QiRL approach into unknown prob-
abilistic environment, in which the robustness of QiRL solution
was demonstrated. Li et al. [8] compared QRL with several
conventional RL (CRL) models1 in human decision-making
scenarios, suggesting that value-based decision-making can be
illustrated by QRL at both the behavioral and neural levels.
However, QiRL is now still in its infancy, and has not been
yet introduced into the field of UAV-aided networks.

In this letter, a novel RL algorithm inspired by quantum
mechanism, which is independent on exploration parame-
ters, is applied to tackle the trajectory planning problem
in UAV-aided uplink transmission scenario. Specifically, in
this proposed QiRL solution, balancing exploration and
exploitation is realized in a manner inspired by the col-
lapse phenomenon of quantum superposition and the quantum
amplitude amplification.2 Different from [6] and [10], we
extend the quantum explanation of QiRL from fixed rotation
angles to their flexible counterparts, which is an alternative
of [8] and [11]. Besides, we also relax the limitation of linear
function mapping in [8] and that of empirical rotation angle
setting in [11]. We aim at providing the first exploration of
emerging QiRL for UAV-aided wireless networks.

II. SYSTEM MODEL

This work concentrates on the uplink transmission sce-
nario consisting of one UAV3 and K ground users (GUs),

1The abbreviation “CRL” denotes the RL methods without involving neural
networks, distinguishing itself from deep reinforcement learning (DRL).

2In QRL, it is expected to implement real quantum computation on practical
quantum computers, while QiRL algorithm invokes several ideas from quan-
tum theory and is still in the frame of CRL which can be directly conducted
on traditional computers.

3Without loss of generality, we focus on the system model with one single
UAV, while the proposed QiRL algorithm can be similarly applied to other
UAVs. The multi-UAV scenario is of importance to be evaluated, which is
out of the scope of this letter and left as one of future research directions.
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in which the location of each ground user is denoted as
�Dk = (xk , yk , 0) where k ∈ {1, 2, . . . ,K}. It is assumed
that all the GUs are uploading their messages in a frequency
division multiplexing manner. Thus, each GU transmits sorely
on its assigned channel and inner-channel interference can be
approximately ignored. Besides, the UAV is assumed to fly
with constant velocity V (m/s) and fixed altitude H (m).4 A
practical assumption on the availability of network information
is applied, in which the UAV cannot obtain any environment
knowledge, e.g., transmit power of the GUs, locations of the
GUs, and can only observe the received signals from the GUs.
The goal of the UAV is to maximize the expected sum uplink
transmit rate (ESUTR) of the GUs via intelligently adjusting
its flying trajectory from the start location �L0 = (x0, y0,H )
to the destination �LF = (xF , yF ,H ). Assume that the feasi-
ble region where the UAV can explore is a rectangular area
[x0, xF ]× [y0, yF ], denoted as Φ for clarity. To make the tra-
jectory design tractable, the entire trajectory is discretized into
F equal-spacing steps, via evenly quantifying the time hori-
zon into F time slots, where the length of each time slot is
predefined as T (s). Furthermore, the 3-dimensional Cartesian
coordinate at the beginning of each time slot can be given by
L = {�L0, �L1, . . . , �LF }, in which �L0 � �Lf � �LF ,∀f ∈ [0,F ],
where � represents element-wise inequality.

The large-scale path loss model on the sub-6 GHz band
is considered to characterize the channel gains for wire-
less links between the UAV and all GUs, which can be
given by PLfk (dB) = 20 lg(dfk ) + 20 lg(�)− 147.55, where
dfk = ‖�Lf − �Dk‖ denotes the Euclidean distance between the
UAV at sampled location �Lf and the GU k, and � represents
the carrier frequency. Note that we herein take line-of-sight
(LoS)-dominated channel gain as an example to evaluate the
proposed system model, which is suitable for suburban or rural
scenario, i.e., the channel gain between the drone and GUs can
be characterized by the distance-based fading channel model.5

The received signal-to-noise ratio (SNR) at the UAV from
the GU k can be derived as Γfk = Pk/(σ2

k10PLfk/10), where
Pk represents the uplink transmit power of the GU k and σ2

k
denotes the power of additive white Gaussian noise.

III. PROBLEM FORMULATION

In this letter, we focus on maximizing the ESUTR for
the UAV travelling from the predefined start location to the
destination, via finding its optimal trajectory. It is straight-
forward to conclude that, at each sampled UAV coordinate
�Lf , the sum uplink transmission rate can be characterized
by

∑K
k=1 ωk log(1 + Γfk ) where ωk means the bandwidth

occupied by the GU k. Furthermore, the problem of ESUTR
maximization can be stated as

max
L

1
F

F∑

f =1

K∑

k=1

ωk log(1 + Γfk ), (1a)

4The UAV’s altitude H is assumed as a fixed parameter, which may corre-
spond to the lowest altitude required for terrain or building avoidance, under
the regulation of local laws in practice.

5This work focuses on strong LoS path loss channel model and the effects
of small-scale fading (e.g., Rician fading or Nakagami-m fading) is omitted.
Besides, non-line-of-sight (NLoS) channel gain can also be easily integrated
into the proposed model via involving extra NLoS fading component, which
means the proposed algorithm is still applicable for NLoS case and this case
is omitted for conciseness.

s.t. ‖�Lf − �Lf−1‖ = VT , (1b)
�L0 � �Lf � �LF , (1c)

FT ≤ E , (1d)
∑

k

ωk ≤ B , (1e)

where B indicates bandwidth capacity of the system and
E represents the maximum flight time threshold. Note that
the constraint (1b) ensures that the flying distance between
arbitrary adjacent time slots is fixed as the UAV’s roaming
capacity VT, the constraint (1c) makes sure that the UAV’s
trajectory is exclusively within the feasible regime, the con-
straint (1d) declares that the maximum exploration time FT
is constrained by the on-board power capacity of the UAV
and the constraint (1e) limits that the sum of each GU’s occu-
pied bandwidth should lie in the range of available bandwidth
resource.

The proposed problem (1) cannot be tackled via tradi-
tional optimization approaches due to the lack of environment
information but can be solved by model-free RL algorithms
in a “trial-and-error” manner, e.g., Q-learning. However, CRL
with tuned exploration parameters (e.g., hyperparameters ε and
τ ) may suffer from difficulty of balancing exploration and
exploitation, which can further affect its learning quality and
convergence performance. To give a better alternative for solv-
ing problem (1), the QiRL technique will be invoked to tackle
the proposed optimal trajectory planning problem.

IV. QIRL SOLUTION

The above trajectory design problem can be interpreted as
a sequential decision-making process following Markov prop-
erty, which means that the UAV’s movement decision for the
current time slot can be sorely determined according to the
information of the previous time slot, regardless those of time
slots before the previous time slot. Therefore, Markov decision
process (MDP) is a suitable candidate for solving the trajec-
tory optimization problem, forging the optimal mapping (i.e.,
the optimal action selection policy) from the state space to the
corresponding action selections.

A. The MDP Formulation

To formulate the MDP, we need to clarify the states of the
proposed QiRL solution for the considered scenario. The fea-
sible area Φ is divided into N1 by N2 small grids and the side
length of each grid equals VT. Besides, we assume that the
sum of received signal strength keeps constant within each
grid.6 The GUs are located in some of the small squares,
which will be specified in the numerical results. According
to the discrete tabular form of Φ, the state set of the UAV
can be written as S = {s1, s2, . . . , sN1N2

}, where si ∈ S
represents a small square in Φ. Because we focus on the
ESUTR maximization problem, it is straightforward to define
R(si ) =

∑K
k=1 ωk log(1 + Γsik ) as the reward function for

state si (also denoting R(si ) as R for simplicity), where Lsi
in Γsik denotes the location of si . In the case of reaching
the boundary of Ψ, the UAV will be rebounded back and the
reward for this trial is set to zero.7 Note that the UAV is only

6This assumption is reasonable because the acreage of each grid is far less
than that of Φ, in the case of sufficient discretization.

7Hereby, we take zero reward for crashing into the boundary as an example.
Of course, one can let this kind of scenario be punished by minus reward.
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able to observe R while other network information is inaccessi-
ble, i.e., Pk , ωk , σ2

k and �Dk . The UAV aims to find an optimal
path, in which the ESUTR of the GUs should be the greatest
among all possible UAV roaming routes from �L0 to �LF . To
drive the UAV to the destination �LF , the UAV will gain a
special reward which is defined as R̂ = 10×maxsi∈SR(si ),
once it reaches �LF . Regarding the UAV’s possible actions,
we limit the movement options of the UAV in the following
action set A = {forward, backward, left, right}, which will
be denoted as quantum eigenactions in the proposed QiRL
solution. The goal of the proposed QiRL algorithm is to
learn a mapping from states to actions, i.e., the UAV aims
to learn a policy π : S × A → [0, 1] so that the expected
sum of discounted rewards for each episode can be maxi-
mized. We define the value function of state s at trial t as
Vπ(s) = Eπ[

∑F
l=0 γ

lR(t + l + 1)|S(t) = s], where γ repre-
sents the discount factor. Furthermore, the temporal difference
(TD)-based value updating rule [10] of the proposed QiRL can
be described as V (s)← V (s) + α[R(s ′) + γV (s ′)−V (s)],
where s ′ means the next state after taking an action and α
indicates the learning rate.

B. Collapsing Action Selection

According to quantum mechanics [12], a quantum state |Ψ〉
(Dirac representation) can describe the state of a closed quan-
tum system, which is a unit vector (i.e., 〈Ψ|Ψ〉 = 1) in Hilbert
space. The quantum state |Ψ〉 consisting of n quantum bits
(qubits) can be expanded as |Ψ〉 = |ψ1〉⊗|ψ2〉⊗· · ·⊗ |ψn〉 =∑11···1

p=00···0 hp |p〉, where |ψi 〉, i ∈ [1,n] represents the i -th
qubit which is a two-state quantum system and the basic unit
of quantum information, the complex coefficient hp (subject
to

∑11···1
p=00···0 |hp |2 = 1) denotes the probability amplitude

for eigenstate |p〉 of |Ψ〉 and ⊗ represents the tensor prod-
uct. The representation of n-qubit quantum state |Ψ〉 follows
the quantum phenomenon called state superposition principle.
Note that hp can take 2n complex values so that the n-qubit
quantum state |Ψ〉 can be regarded as the superposition of 2n

eigenstates, in the range from |00 · · · 0〉 to |11 · · · 1〉.
To represent the four possible actions in QiRL, two qubits

are sufficient. Furthermore, eigenactions (i.e., the quantum
representation of physical actions) |a1〉, |a2〉, |a3〉, |a4〉 are
allocated to denote the actions forward, backward, left and
right, respectively. Inspired by the superposition principle of
quantum theory, we can represent the four egienactions in their
quantum superposition form, given by |A(l)〉 = |ψ1〉⊗|ψ2〉 =∑11

a=00 ha |a〉 →
∑4

n=1 hn |an〉, where l represents a spe-
cific trial and the complex coefficients hn and ha are the
probability amplitudes under the normalisation constraints∑4

n=1 |hn |2 = 1 and
∑11

a=00 |ha |2 = 1, respectively. Note
that the two-qubit superposition |A(l)〉 is a unit vector in a
4-dimensional Hilbert space spanned by the four orthogonal
bases |00〉, |01〉, |10〉 and |11〉. Specifically, the action taken
by the UAV before any quantum measurement lies in a super-
position state (four options in total, i.e., |a1〉, |a2〉, |a3〉 and
|a4〉), which is mapped into the tensor product of two qubits.

In quantum theory, when an external agency (e.g., experi-
menter) measures the quantum state |Ψ〉 =

∑
n �n |ψn〉 with

the eigenbasis {ψn}, |Ψ〉 will collapse from the superposition
state to one of its eigenstates |ψn〉, i.e., |Ψ〉→|ψn〉, with prob-
ability |〈ψn ||Ψ〉|2 = |�n |2. Inspired by this quantum collapse
phenomenon, the superposition |A(l)〉 is supposed to collapse

onto one of its eigenactions |an〉 with probability of |hn |2,
during action picking in the proposed QiRL algorithm.

C. Grover Iteration

The quantum representation |A(l)〉 establishes a bridge
between quantum eigenactions and the physical action set
A, which allows us to apply quantum amplitude amplifica-
tion as a reinforcement strategy. The probability amplitude of
each eigenaction can be amplified or attenuated via specific
quantum algorithm (e.g., Grover’s iteration [12]), gradually
modifying the probability distribution of collapsing. To realize
this, two unitary operators can be employed for the currently
chosen action |ai 〉 which is from the l-th trial |A(l)〉 =∑4

n=1 hn |an〉 = hi |ai 〉 + ha⊥
i
|a⊥i 〉, shown as U |ai 〉 = I −

(1−ejφ1)|ai 〉〈ai | and U |A(l)〉 = (1−ejφ2)|A(l)〉〈A(l)|−I ,

where |a⊥i 〉 =
∑

n �=i
hn
h
a⊥
i

|an〉 means the vector orthogonal

to |ai 〉, ha⊥
i

=
√∑

n �=i |hn |2 =
√

1− |hi |2, I represents the

identity matrix, and 〈an | and 〈A(l)| are Hermitian transposes
of |an〉 and |A(l)〉, respectively. Then, the Grover operator can
be constructed as unitary transformation G = U |A(l)〉U |ai 〉.
After m times of applying G on |A(l)〉, the amplitude vector
in the next trial becomes |A(l + 1)〉 = Gm |A(l)〉.

There are mainly two methods to deal with the aforemen-
tioned probability amplitude updating task. One is to choose
a feasible value of m with fixed parameters φ1 and φ2 (com-
monly both of them equal to π); the other is to fix m = 1 with
dynamic parameters φ1 and φ2. Because the former updating
approach can only modify the amplitudes in a discrete manner,
the later method is chosen in this work, i.e., Grover iteration
with flexible parameters φ1 and φ2. Then, the impacts of G
on the superposition representation |A(l)〉 can be given by the
following proposition.

Proposition 1: The overall effects of G with free parameters
φ1 and φ2 on the superposition representation |A(l)〉 at the
l-th trial can be expressed analytically as G|A(l)〉 = (Q −
ejφ1)hi |ai 〉 + (Q − 1)ha⊥

i
|a⊥i 〉, where Q = (1 − ejφ2)[1 −

(1− ejφ1)|hi |2].
Proof: The impacts of U |ai 〉 on |ai 〉 and |a⊥i 〉 can be

given by U |ai 〉|ai 〉 = [I − (1 − ejφ1)|ai 〉〈ai |]|ai 〉 =
ejφ1 |ai 〉 and U |ai 〉|a⊥i 〉 = [I − (1 − ejφ1)|ai 〉〈ai |]|a⊥i 〉 =
|a⊥i 〉, respectively. Furthermore, we have U |ai 〉|A(l)〉 =
[I − (1 − ejφ1)|ai 〉〈ai |]|A(l)〉 = ejφ1hi |ai 〉 + ha⊥

i
|a⊥i 〉,

in which U |ai 〉 plays the role as a conditional phase
shift operator in quantum computation. At the end, we
can obtain G|A(l)〉 = U |A(l)〉U |ai 〉|A(l)〉 = (1 −
ejφ2)[hi |ai 〉 + ha⊥

i
|a⊥i 〉][h†

i 〈ai | + h†
a⊥
i

〈a⊥i |]U |ai 〉|A(l)〉 −
U |ai 〉|A(l)〉 = (Q − ejφ1)hi |ai 〉 + (Q − 1)ha⊥

i
|a⊥i 〉, where

Q = (1− ejφ2)[1− (1− ejφ1)|hi |2].
Remark 1: The ratio between the probability amplitudes of

|ai 〉 after being acted by the Grover operator G and before that
can be expressed as Λ = (1− ejφ1 − ejφ2)− (1− ejφ1)(1−
ejφ2)|hi |2. Then, the updated occurrence probability of the
selected action |ai 〉 can be given by |Λ|2|hi |2.

Remark 2: For ease of understanding the effect of G, we
depict its algebraic visualization. In Fig. 1, |A(l)〉 is recon-
structed via polar coordinates on the Bloch sphere, shown
as |A(l)〉 = ej ζ(cos θ

2 |ai 〉 + ejϕ sin θ
2 |a⊥i 〉) � cos θ

2 |ai 〉 +
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Fig. 1. Geometric explanation of the Grover rotation.

ejϕ sin θ
2 |a⊥i 〉, where ej ζ can be omitted because a global

phase poses no observable effects [8]. Note that the polar
angle parameter θ and the azimuthal angle variable ϕ define
the unit vector |A(l)〉 on the Bloch sphere, as shown in
Fig. 1. The impact of U |ai 〉 can be understood as a clock-
wise rotation around the z-axis by φ1 (the red circle) on
the Bloch sphere, leading to the rotation from |A(l)〉 to
|A(l)′〉. Similarly, if we change the basis from {|ai 〉, |a⊥i 〉} to
{|A(l)〉, |A(l)⊥〉}, U |A(l)〉 makes a clockwise rotation around
the new z-axis |A(l)〉 by φ2 (the blue circle), which rotates
|A(l)′〉 to |A(l + 1)〉. Therefore, the overall effect of G on
|A(l)〉 is a two-step rotation which can modify the polar
angle θ, when the basis is locked as {|ai 〉, |a⊥i 〉}. Via control-
ling parameters φ1 and φ2, it is possible to realize arbitrary
parametric rotation on the Bloch sphere, which acts as the
foundation for modifying the probability amplitudes of |A(l)〉.
The smaller θ is, the higher probability |A(l)〉 will collapse
to |ai 〉 when it is measured, which inspires us to apply it
as a reinforcement strategy. The core of this reinforcement
approach is to achieve a smaller θ via manipulating φ1 and
φ2 when |ai 〉 is recognized as a “good” action. Otherwise, if
|ai 〉 is determined as a “bad” action, φ1 and φ2 should be
modified to enlarge θ.

D. The Proposed QiRL Algorithm

Remark 1 and Remark 2 give an explanation for amplitude
amplification in quantum mechanism, which can be applied as
the quantum-inspired reinforcement strategy for our proposed
QiRL approach. According to Remark 1, it is straightfor-
ward to conclude that |Λ|2 should be designed to be larger
than 1, if the current representation |ai 〉 is determined as
a “good” action. Otherwise, |Λ|2 should be manipulated to
be smaller than 1. By selecting feasible φ1 and φ2, it is
possible to manipulate the value of |Λ|2 in the manner as
mentioned before, which can be interpreted geometrically via
Remark 2. For the sake to simulate it on a conventional
computer, we use ek∗[R+V (s′)] to alternatively represent the
overall effects of G on probability |hi |2, which means the
updated occurrence probability of the selected action |ai 〉
should be ek∗[R+V (s′)]|hi |2. If k > 0, the current action will
be rewarded while it will be punished if k < 0. The updating
amplification is controlled via k ∗ [R + V (s ′)].8

Note that all the possible probability amplitudes together
should be re-normalized after each implementation of ampli-
tude amplification, which is subject to the normalization

8The absolute value of constant hyper-parameter k should be chosen as per
the environment, to avoid over-updating issue on occurrence probability of
the selected action. Then, the updating amplification is dynamically steered
by R + V (s′) with constant k, because the state values are being modified
alongside the learning process.

Algorithm 1: The Proposed QiRL Algorithm

Input: Learning parameters: α ∈ [0, 1], γ = 1; UAV
informations: �L0, �LF , H, V, T, E;

Output: The optimal policy π∗=AmpMem;
1 Initialization: ep = 0; s = �L0; V (s) = 0, ∀ s ∈ S;

AmpMem = defaultdict(lambda: [1
4 , 1

4 , 1
4 , 1

4 ]);
2 while ep ≤ NumEp do
3 repeat
4 Pick a for s via measuring AmpMem[s];
5 Apply a and observe reward R and next state s ′;
6 Update the value function as per
7 V (s)← V (s) + α

[
R + γV

(
s ′

)−V (s)
]
;

8 Apply quantum-inspired reinforcement factor
ek∗[R+V (s′)] on AmpMem[s][a]. When the
UAV hits the boundary or value difference
ΔV (s) < 0, k < 0. Otherwise, k > 0;

9 Re-normalize AmpMem[s] and set s ← s ′;
10 until F > E/T or s ′ == �LF ;
11 ep + = 1;
12 end

constraint of quantum superposition. The proposed QiRL solu-
tion is concluded in Algorithm 1, which can be conducted in
conventional computers.

Remark 3: The quantum-inspired reinforcement strategy
prioritizes all possible actions in ranked probability sequence
which is gradually updated alongside the learning process.
Thus, it can naturally balance the exploration and exploita-
tion, in which no tuned exploration parameter is necessary.
This enhancement has the potential to help realize faster con-
vergence and satisfactory learning quality, which will be later
illustrated in the simulation results.

Proposition 2: The convergence of the proposed QiRL
algorithm is guaranteed when the learning rate α is
non-negative and satisfies limT→∞

∑T
k=1 αk = ∞ and

limT→∞
∑T

k=1 α
2
k <∞.

Proof: The proof is omitted for its simplicity, which is
similar to the proof of Proposition 2 in [6].

V. SIMULATION RESULTS

In this section, experimental results are evaluated for the
considered UAV trajectory planning problem via the proposed
QiRL solution. For comparison, two CRL methods (i.e.,
Q-learning with ε-greedy and Boltzmann exploration strate-
gies) are performed as benchmarks. It is assumed that the
feasible UAV exploration field Φ is a square area with side
length 200 m, where 5 GUs are located on the ground (denoted
by the red stars). By default, the length of each time slot is
fixed as T = 2 s and the constant flying altitude and speed
of the UAV are set as H = 100 m and V = 10 m/s, respec-
tively. The area Φ is divided into 10-by-10 small grids and the
side length of each grid equals VT = 20 m. The start location
and the destination are predefined at �L0 = (10, 190, 100) and
�LF = (190, 10, 100), respectively. Considering the on-board
power capacity of the UAV, the total flying time of the UAV is
constrained as FT ≤ 1800 s so that we set E = 1800. Besides,
we set Pk = 1 Watt, σ2

k = 1, � = 2 GHz, B = 10 MHz and
ωk = 2 MHz, which is in line with [4].
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Fig. 2. Performance Comparison of Two Q-Learning Approaches and the Proposed QiRL Solution.

Fig. 2 shows the performance comparison of one widely-
used CRL approach called Q-learning with two action selec-
tion strategies, i.e., ε-greedy and Boltzmann, and the proposed
QiRL solution. Note that exploration parameters ε and τ of
Q-learning approach keep annealing alongside the learning
progress, which controls the ratio of exploration and exploita-
tion and significantly affects the overall learning quality and
convergence performance. In this figure, the learned trajecto-
ries of Q-learning and QiRL are also depicted for intuitive
comparison. Specifically, subfigure (a) shows the expected
reward curves, which corresponds to subfigure (b).

From subfigure (a), it is straightforward to observe that
the proposed QiRL solution can converge much faster than
Q-learning with ε-greedy action selection strategy, while it
has relatively faster convergence speed than Q-learning with
advanced Boltzmann action selection strategy, which illus-
trates that the proposed QiRL algorithm can offer better
convergence performance. Moreover, from subfigures (b) and
(c), we can observe that all the simulated RL approaches
can output proper trajectories in these two different network
environments. However, while Boltzmann strategy can offer
faster convergence performance than ε-greedy, it leads to
sub-optimal trajectory, as shown in subfigures (a) and (b).
According to Fig. 2, the proposed QiRL solution can not
only enhance convergence performance but also achieve the
equivalently optimal trajectory compared to Q-learning with
ε-greedy action selection strategy. Note that the balancing
between exploration and exploitation in ε-greedy or Boltzmann
aided Q-learning approach is controlled by the pickings of
initial exploration parameter (i.e., ε or τ , respectively) and
their corresponding annealing speeds, which directly and
inherently influences convergence performance and learning
quality. Generally speaking, the initial exploration parameters
and their corresponding annealing speeds are modified via
empirical knowledge when the learning environment varies.
However, simply decaying exploration parameter (linearly or
non-linearly) alongside the learning progress could easily lead
to insufficient learning or low speed of convergence. To deal
with this unsatisfactoriness, the proposed QiRL algorithm
applies quantum-inspired action selection approach, offering
natural balancing between exploration and exploitation along-
side the learning progress and thus can better deal with the
trade-off between convergence speed and learning quality.

VI. CONCLUSION

This letter introduced a QiRL solution to tackle the trajec-
tory planning problem which aims to optimize the ESUTR

performance for the UAV flying from the start location to
the destination. Specifically, the proposed QiRL approach uti-
lizes the novel collapse action selection strategy inspired by
quantum mechanism, which can offer a natural way to bal-
ance exploration and exploitation via sorting probabilities of
action collapse in a ranking sequence. Numerical results com-
pared the convergence performance and the learned trajectories
between the proposed QiRL solution and the widely-used
Q-learning approach with ε-greedy and Boltzmann exploration
strategies, validated the effectiveness of the proposed QiRL
solution and showed that the QiRL solution can better deal
with the trade-off between convergence speed and learning
quality than traditional Q-learning approaches.
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