ICC 2022 - IEEE International Conference on Communications | 978-1-5386-8347-7/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICC45855.2022.9838566

Intelligent UAV Navigation: A DRL-QiER Solution

Yuanjian Li, Student Member, IEEE and A. Hamid Aghvami, Fellow, IEEE
Centre for Telecommunications Research (CTR), King’s College London, London WC2R 2LS, U.K.
Email: {yuanjian.li, hamid.aghvami}@kcl.ac.uk

Abstract—In cellular-connected unmanned aerial vehicle (UAV)
network, a minimization problem on the weighted sum of time cost
and expected outage duration is considered. Taking advantage of
UAV’s adjustable mobility, an intelligent UAV navigation approach
is formulated to achieve the aforementioned optimization goal.
Specifically, after mapping the navigation task into a Markov deci-
sion process (MDP), a deep reinforcement learning (DRL) solution
with novel quantum-inspired experience replay (QiER) framework
is proposed to help the UAYV find the optimal flying direction within
each time slot. Via relating experienced transition’s importance to
its associated quantum bit (qubit) and applying Grover-iteration-
based amplitude amplification technique, the proposed DRL-QIiER
solution commits a better trade-off between sampling priority
and diversity. Compared to several representative baselines, the
effectiveness and supremacy of the proposed DRL-QIER solution
are demonstrated and validated in numerical results.

Index Terms—Drone, trajectory design, deep reinforcement
learning, quantum-inspired experience replay.

I. INTRODUCTION

With flexible mobility, low cost and on-demand deploy-
ment, unmanned aerial vehicles (UAVs) have been widely
used in civilian scenarios, e.g., building safety inspections,
disaster management and material transport. In practice, point-
to-point (P2P) wireless links over unlicensed spectrum are com-
monly utilized to support the communications between UAVs
and ground nodes, leading to limited communication quality
[1]. To further enhance wireless transmission between UAVs
and ground transceivers, cellular-connected UAV technique is
deemed as a promising solution, via adopting widely-existing
terrestrial base stations (BSs) to help establish high-quality
ground-to-air (G2A) transmission links [2].

Current cellular networks are genuinely established for serv-
ing user equipments on the ground, via downtilting the main
lobe of BS’s antenna towards the earth [2]. More severe inter-
cell interferences (ICIs) introduced by line-of-sight (LoS)-
dominated G2A links can further deteriorate the aerial coverage
issue, compared to terrestrial communication scenario where
non line-of-sight (NLoS) channels are most likely experienced.
The controllable mobility feature of UAV makes it possible to
tackle the aforementioned aerial coverage obstacles via UAV
trajectory planning, either by on-board algorithms or remote
pilots. However, standard off-line optimization approaches solv-
ing trajectory design problem suffer from inefficiency due to
non-convex nature of the formulated optimization objective
and the corresponding constraints, even under impractical as-
sumptions where perfect knowledge of wireless environment is
available. Fortunately, reinforcement learning (RL) serves as a
good complement to traditional off-line optimization solutions,

which is famous for learning unknown environment. Cui et
al. [3] investigated a real-time design on resource allocation
for multiple-UAV network, in which multi-agent reinforcement
learning (MARL) framework was proposed to realize optimal
user selection, power allocation and sub-channel association.
Zeng et al. [2] solved an optimal UAV trajectory planning
problem on minimizing the weighted sum of mission comple-
tion time and expected transmission outage duration, via deep
reinforcement learning (DRL)-aided approaches.

Meanwhile, quantum theory has been proven to pose a
positive impact on improving learning efficiency for artificial
intelligence algorithms in general, and RL-related approaches
in particular. Dong et al. [4] proposed quantum-inspired re-
inforcement learning (QiRL) to solve intelligent navigation
problem for autonomous mobile robots, where probabilistic
action selection method and novel reinforcement approach
inspired by quantum phenomenon were integrated into standard
RL frameworks. Paparo et al. [5] showed that quadratic speed-
up is achievable for intelligent agents, with the help of quantum
mechanics. In the field of wireless communications, Li et al.
[6] investigated an optimal path planning problem for UAV-
mounted networks, in which QiRL solution was demonstrated
to offer better learning performance than conventional RL
methods with e-greedy or Boltzmann action selection policy.'

In this paper, we integrate several ideas in quantum me-
chanics and DRL techniques to solve intelligent trajectory
planning problem for cellular-connected UAV networks. The
main contributions of this paper are summarized as follows.

o A cellular-connected UAV trajectory planning problem
is formulated to minimize the weighted sum of flight
time cost and the corresponding expected outage duration.
Without knowledge of wireless environment, the path plan-
ning problem is challenging to be tackled via conventional
optimization techniques. Alternatively, it is solved by the
proposed DRL solution with quantum-inspired experience
replay (QiER).

o A novel QiER framework is coined to help the learning
agent achieve better training performance, via a three-
phase quantum-inspired process.

e Compared to DRL approach with standard experience
relay (DRL-ER) or prioritized ER (DRL-PER), deep
curriculum reinforcement learning (DCRL) method and

ICompared to our prior work [6], we extend the quantum aid from enhancing
action selection quality for RL framework to improving experience replay
performance for DRL counterpart, breaking the curse of dimensionality and
enabling the agent to practically solve problems with continuous state space.
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simultaneous navigation and radio mapping (SNARM)
strategy, simulation results demonstrate that the proposed
DRL-QIER solution can achieve more efficient and steady
learning performance.

II. SYSTEM MODEL

A downlink transmission scenario inside cellular-connected
UAV network is considered, where a set &/ of U UAVs
is served by a set B of B BSs within cellular coverage.
These UAVs are supposed to reach a common destination
from their respective initial locations, for accomplishing their
own missions.”> Without loss of generality, an arbitrary UAV
(denoted as wu hereafter) out of these U drones are concen-
trated for investigating the navigation task.> For clarity, the
UAV’s exploration environment is defined as a cubic subregion
A 210, Zup) X [Yios Yup] X [210, Zup), Where the subscripts "lo"
and "up" represent the lower and upper boundaries of this
3D airspace, respectively. Furthermore, the coordinate of the
focused UAV at time ¢ should locate in the range of ¢, =<
Gu(t) =< qup> Where Jio = (Z10, Yio» 210)5 Qup = (xupvyupa Zup) and
= denotes the element-wise inequality. The initial location and
the destination are given by ¢, (1) € R'*3 and g, (D) € R'*3,
respectively. Then, the overall trajectory of this UAV’s flight
can be fully traced by ¢,(t) = (z(t), yu(t), z,(¢)), starting
from @, (1) and ending at ¢, (D).

Following standard sectorization, each BS is portioned to
cover three sectors. Therefore, there are 3B sectors in total
within the interested airspace A. Denote i € {1,...,3B} as
the label of sectors and assume that the UAV is associated
with sector ¢ at time ¢, the signal-to-interference-plus-noise ratio
(SINR) at the UAV can be derived as

Gy (t)] PL‘[Qu ()]

P10 |z

IL,(t) + o2 ’

I (t) = (1

G qu (D] =PLE Gy ()]
10

where I,(t) = >, ; P10 |hiw|? means the
ICIs from un-associated sectors, G [q,(t)] indicates antenna
gain, PL'[q,, ()] means G2A pathloss, P; is the average transmit
power of sector ¢, h;, represents the corresponding small-
scale fading channel and o2 denotes the variance of additive
complex Gaussian noise (AWGN). The received SINR (1)
is a random variable because of the randomness introduced
by small-scale fadings, with given UAV coordinate ¢, (¢) and
cell association 7(t). Therefore, the corresponding transmission
outage probability (TOP) can be formulated as a function of
Gu(t) and i(t), ie., TOP{q.(t),i(t)} = Pr[[u(t) < T,
where Pr outputs the probability calculated with respect to
(w.r.t.) the aforementioned small-scale fadings. Then, the er-
godic outage duration (EOD) of the UAV w travelling with

2For example, one typical UAV application case is parcel collection. Various
UAVs are launched from different costumers’ properties carrying parcels to the
local distribution centre of delivery firm.

3These UAVs share the same airspace and common location-dependent
database, which means that the trained DRL model can be downloaded by
the remaining UAVs, helping them accomplish their navigation tasks.

trajectory ¢, (t),Vt € [0,7y] from §,(I) to @, (D) can be
expressed as

EOD{.(1).i(1)} = /) TOP(d(1),i(t)}dt. ()

In this paper, we focus on minimizing the weighted sum
of T, and FOD,{q,(t),i(t)} via designing G, (t) and i(t).
Unfortunately, continuous time ¢ implies infinite amount of
velocity constraints and location possibilities, leading the UAV
path planning task too sophisticated to be handled. Alter-
natively, the flight period 7, is uniformly divided into N
time slots. The duration of each time slot Ay = T,/N is
controlled to be sufficiently small so that the distance, pathloss
and antenna gain from each sector towards the UAV can
be considered as approximately static within arbitrary time
slot. Besides, sector assignment is commonly dependent on
pathloss to avoid non-stop handover in practice, and thus the
associated sector within each time slot is assumed unchanged.
Therefore, (2) can be approximated as EOD, {q,(t),i(t)} ~
SN ATOP{G,(n),i(n)}. With given G,(n) and i(n) for
each time slot, TOP, {7, (n),(n)} can be obtained via numer-
ical signal measurement at the UAV. Then, we have

L
TOPAG.(n), i)} ~ 7 3" ITOP{G.(n), im)Ih()}, ()
=1
where h(¢) indicates one realization of the involved small-scale
fading components, L represents the amount of signal mea-
surements, the TOP indicator IT'OP{q,(n), i(rf)|h(4)} =1if
Tu{qu(n),i(n)|h()} < T and ITOP{q,(n),i(n)|h(e)} =
otherwise. Note that L > 1 stands in practice, which means that
the approximation (3) is feasible to be treated as an equation.
Then, the corresponding optimization problem can be stated as

(P1 m(ln) 7221T0P{qu Ji(m)[h()}+N,  (4a)
Yullt n=1t=1

sti(n) = argmin PL'[G,(n)], (4b)
i€{1,2,-,3B}

dn+1) =qn) + VoA, (n), |0, (n)] =1, (4¢)

Qiojqu(n) j%paqu(o)ziu(l)aqu(N):(Tu(D)a (4d)

where 7 is the weight balancing the minimization objective,
V., represents the UAV’s flying velocity and ,(n) specifies
the mobility direction. The constraint (4b) holds because the
sector association strategy is dependent sorely on pathlosses
from all the sectors within each time slot and it is clear that
the UAV should always pair with the sector which can offer
the least degree of pathloss.

It is straightforward to conclude that antenna gain and
LoS/NLoS condition from each sector to the UAV are depen-
dent on the UAV’s location with given building and BS distribu-
tion, which further impacts the corresponding pathloss and type
of small-scale fading. This makes it extremely sophisticated to
solve problem (P1) via standard optimization methods, if not
impossible. To provide a better alternative solving the proposed
optimization problem (P1), a DRL-aided solution with a novel
QiER framework will be proposed.
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III. DRL-QIER ALGORITHM

In this section, a DRL-QiER solution* is developed to solve
optimization problem (P1).
A. The MDP Formulation

To solve the optimal trajectory planning problem (P1) via
DRL-aided technique, the first step is to map it into a Markov
decision process (MDP), which can be described as follows.

o &S: The state space consists of possible UAV locations g,
under constraint gi, = ¢, = Gup, Which means that the
state space is continuous.

o A: The continuous action space involves all the feasible
flying directions ¥, under constraint |7, | = 1. To break
the curse of dimensionality caused by continuous state
and action spaces, the action space is discretized as A =
{11,0,0],[0,1,0],[-1,0,0],[0, —1,0],[-v/2/2,v/2/2,0],
[\/5/27 \/5/27 0}7[\/5/27_\/5/27 0]7[_\/5/2_\&/27 0}}’
corresponding to flying directions right, forward, left,
backward, left-forward, right-forward, right-backward and
left-backward, respectively.

o 7: The state transition is deterministic and controlled by
the mobility constraint (4c).

o 7: Our goal is to minimize the weighted sum of time cost
and EOD. Thus, we may design the reward function as
r(G,) = —1 — T Zle ITOP{qy,|h(¢)}. The formula-
tion of r(g,) can be interpreted as follows: 1) for each
time of state transition, the agent will receive a movement
penality 1, encouraging the UAV to use less steps to gener-
ate the trajectory; and 2) on top of the movement penality,
the UAV will get a weighted outage duration penality
T%‘ Zle ITOP{qd,|h(¢)} as well, pushing the UAV to
visit locations with stronger wireless coverage quality.
Besides, two special cases are considered as follows: 1)
once the UAV reaches the predefined destination g, (D),
the training episode terminates and a positive value rp will
replace the reward function; and 2) once the UAV crashes
onto the boundary of the considered airspace, the training
episode terminates and a negative value r,; will replace the
reward function instead. In summary, the aforementioned
design of reward function aims to encourage the UAV
to reach ¢,(D) with as fewer steps as possible, while
avoiding hitting the boundary and visiting areas with weak
wireless coverage.

« 7: To connect the objective function of (P1) and the dis-
counted accumulated-rewards over each learning episode,
the discount factor is chosen as v = 1.

B. Quantum-Inspired Representation of Experience’s Priority

In the proposed DRL-QIER solution, the priority of expe-
rienced transition is represented by the k-th qubit, where the
scalar index k indicates this transition’s location index in the
QiER buffer. Specifically, the quantum representation of stored
transition’s priority can be given by

W) = i [0) + B |1), )

4For detailed information regarding the design of DRL-QIiER approach,
please refer to [7] which is the full version of this conference paper.

where the complex-valued probability amplitudes oy and Sy
follow the normalization constraint |ay,|+|Bx|? = 1. It is worth
noting that the eigenstates |0) and |1) in (5) mean accepting
and denying this transition, respectively. After quantum mea-
surement, the superposition |¥y) will collapse onto eigenstate
|0) with probability | (0|¥}) |*> = |ax|? or eigenstate |1) with
probability | (1|¥}) |> = |Bk|?>. The complex coefficients ay,
and [y are of importance in the QiER system, influencing the
occurrence probability of accepting or denying the correspond-
ing transition when |Wy) is observed.

C. QiER Framework

The proposed QiER framework consists of the following
three phases.

1) Quantum Initialization Phase: When one transition is
stored into the QiER buffer with finite capacity C, a label k €
{1,...,C} will be assigned to it, which specifies the location
of this transition being recorded within the QiER buffer. When
a new transition is recorded into the QiER buffer and before
being sampled out to feed the training agent, its associated qubit
|¥)) should be initialized as eigenstate |0), i.e., |¥y) < |0).
The reason is that the agent has never been trained with these
un-sampled transitions that may have unimaginable potentials
to help the agent learn the characteristics of environment with
which the agent is interacting. Thus, we assign these newly-
recorded transitions with the highest priority, encouraging the
agent to more likely learn from them.

2) Quantum Preparation Phase: After an experience is
sampled from the QiER buffer to train the agent, the quantum
preparation phase should be performed on its associated qubit,
updating the corresponding priority. This is due to two reasons:
1) the temporal difference (TD) error of this transition is
updated; and 2) the experience becomes older for the agent.

The uniform quantum state is defined as

V2
=2
The absolute value of TD error |0;| is chosen to reflect priority
of the corresponding transition. Once a recorded transition is
sampled, its associated qubit |¥) should first be reset to the
uniform quantum state, i.e., |¥;) < |+). Then, to map the
updated priority into |¥y), one time of Grover iteration with
flexible parameters ¢; and ¢, will be applied on the uniform
quantum state, shown as

(10) + 1)) - (©6)

a ; 2 2
W)U U 0 2P-) 2 j0P-1) 2 1) 0

where P = (1 — e/?2) [1 - 0.5(1 — €/%1)] and the derivation
(a) is based on Proposition 1 of [7].

In practical applications, some experiences may be sampled
for training with undesired high frequency, leading to over-
training issue. Besides, the finite size of QiER buffer could
further deteriorate this disservice [8], which will cause unfair
and biased sampling performance. To circumvent this issue, the
replay time of each stored transition should be taken into con-
sideration for the quantum preparation phase, which enables it
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to enrich sample diversity to improve the learning performance.
In the early stage of training the agent, the importance of
each experience is ambiguous. However, alongside the learning
process, the absolute TD errors of some transitions remain
relatively large, despite many times they have been sampled
for training. Hence, it is necessary to relate training episode to
the quantum preparation phase.

The quantum preparation phase aims to modify the collapse
probability onto eigenstate |0), via one time of Grover iteration
with free parameters ¢; and ¢o. To quantify the amplification
step of quantum preparation phase, we let

[8¢|m 1841w
€ dmx — e dmx T T Ol T
&1 =~ 5 = §tanh (|5t| ) € [0,5) . (8)
e Smax + 67 Smax max

)

rtp  te s T 37
¢ = 7r ( } :

Tt max t€max 2 27 2
With (8) and (9), the quantum amplitude amplification is related
with the corresponding absolute TD error |d;|, maximum TD
error Opma, replay times rtg, maximum replay time 7tyax,
current training episode te and the total training episode tep,x,
which means that the quantum preparation phase updates the
priority of experience into its associated k-th qubit [¥y).

3) Quantum Measurement Phase: After the QiER buffer is
fully occupied by recorded transitions, a mini-batch of experi-
ences will be sampled to perform network training for the agent,
via standard gradient descent method. To prepare the mini-batch
sampling procedure under constraint of priorities, quantum
measurement on the associated qubits should be accomplished
first. Specifically, the probability of the k-th qubit collapsing
onto eigenstate |0) can be calculated as | (0|¥) |>. Then, the
probability of the corresponding experience being picked up
during the mini-batch sampling process can be defined as
bpr = | (01Wk) 2/ S50 [ (0] 2.

D. The Proposed DRL-QiER Solution

The proposed DRL-QiER algorithm is summarized in Algo-
rithm 1, of which the flow chart is illustrated in Fig. 1. To
solve the formulated MDP in Section III-A, double deep Q
network (DQN) with duelling architecture (D3QN) is adopted
to approximate the Q function Q(q,,v,). To further speed up
and stabilize the learning process, /V,,s-step learning and target
network techniques are adopted for updating parameters of the
online D3QN. Specifically, the online D3QN aims to minimize
the following loss function

L(Op3) = [rt:t+Nms + VN””SQ(q’u(HNmSw5?”0133)

—Q(Tur), Bun)803)] >, (10)

where 744N, . = Zi\’,:l;ol Y ™y, 1 indicates the Ny, -
step discounted accumulated-reward, @p3 is the parameter
vector of the online D3QN and 6., means the parameter
vector of the target D3QN. The selected action ¢}, in (10) is

chosen from the online D3QN rather than the target D3QN,
ie., U = arg maxQ(qu(t_s_Nm), Uy |0 p3), which completes the

double DQN procedure

Algorithm 1: The Proposed DRL-QIiER Solution

1 Initialization: Initialize the online D3QN network Q p5(s, a|6p4) and its target network
Qps(s, al@,), with 8, < 6 p;. Initialize the QIER buffer R with capacity C'. Initialize the vector

of replay time as ¢ = [rt,, Tty, ..., rte] = 0. Set the size of mini-batch as N,,,. Set the order
index of R as k = 1. Set the flag indicating whether the QIiER buffer is fully occupied or not as
LF = False. Set the maximum TD error as dax = 1
2 for te = [1, temax] do
3 Set time step . = 0. Randomly set the the UAV’s initial location as @, () € S. Initialize a
sliding buffer R with capacity Ny, 53
4 repeat
5 Select and execute action @, then observe the next state @y, (7 4 1) and the immediate
reward 7y, = i [Ty (n + 1))
6 if LFF == True then
7 Perform quantum measurement on all stored experiences’ qubits and get the vector of
their replaying probabilities [bp;, bpy, . . ., bpe]:
8 for n,,, = [1, N,,] do
9 Sample a transition according to [bp,, bp,, . . . , bpc] and get its location
indexd € {1,2,..., C}:
10 Reset the d-th qubit back to uniform quantum state |¥,) = [+);
11 Update the corresponding replay time rt,+ = 1 and rtyax = [de(‘? t);
12 Calculate the sampled transition’s absolute NN, g-step TD error \ENM | and
update the maximum TD error Spnax = max(Smax [Sn,,. )3
13 Perform quantum preparation phase on the d-th qubit;
14 end
15 Update the online D3QN network Q 3 (s, |6 ;) via gradient descent method using
the mini-batch of sampled N, transitions from R;
16 end
17 Get and record transition expy, = {gu (n), an, ™n, Gu(n 4+ 1)} into R;
18 if n > Ny, s then
19 Generate the Ny, g -step reward TH— Npmsin from R and record Ny s-step
experience
Py roin = (G (N = Nm)s Gp T s G (n)}
into R with order index k;
20 Perform quantum initialization phase on the k-th qubit as | ¥, ) = |0). Reset
rt, = 0and let k+ = 1;
21 if k > C then
22 | Set LF = Trueandreset k = 1;
23 end
24 end
25 Let n+4 = 1:
2 until 7y (n) = qu (D) || Gu(n) ¢ S || n = Nuax:
27 Update € «— € X dece. Update the target D3QN Qp;(s, a|6},,) every Y p, episodes, ie.,
0, + Op;:

28 end

Figure 1: Flow chart of the proposed DRL QlER algorithm
IV. NUMERICAL RESULTS

In this section, simulation results for the proposed DRL-
QIER solution and the corresponding performance comparison
against several baselines are performed. For conducting the
simulation, the UAV’s exploration airspace is set as A
[0,1] x [0,1] x [0,0.1] km. Fig. 2 delivers the top view of
A, in which the locations of involved BSs and the direction
of each ULA’s boresight are specified. To generate building
distribution within A, one realization of statistical model sug-
gested by the International Telecommunication Union (ITU) [9]
is invoked, which is subject to the following three parameters:
1) & indicates the ratio of region covered by buildings to the
whole land; 2) B represents average amount of buildings; and
3) 4 determines building heights’ distribution (say, Rayleigh
distribution with mean 4 > 0). Besides, the pathloss and small-
scale fading components of G2A link are assumed to follow
3GPP urban Macro (UMa) [10] and block Nakagami-m chan-
nel models, respectively. For BSs’ antenna model, vertically-
placed uniform linear array (ULA) suggested by 3GPP [11]
is applied to serve each sector, with fixed 3-dimensional (3D)
radiation pattern. The common destination’s location is fixed at
qu(D) = (0.8,0.8,0.1) km. Unless otherwise mentioned, the
parameter setups regarding simulation environment are in line
with Table I.

Four DRL-aided baselines are considered for performance
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Table I: Parameter Settings for Simulation

Parameters Parameters

Values |

Parameters Values

Values |

Amount of BSs B 4 Amount of sectors 3B 12 Capacity of QIiER buffer C' 20000
Horizontal side-length of A D 1 km Amount of each ULA’s array elements M 8 Size of mini-batch N, 128
Half-power beamwidth © sy / P 345 65°/65° Speed of light ¢ 3 X 10° m/s Initial e-greedy factor € 05
Carrier frequency fe 2 GHz Wave length X 15 cm Annealing speed dece 0.994/episode
ULA’s element spacing distance d., 75 cm ULA’s electrically titled angle 6,,,, 100° Target D3QN update frequency Y 1, 5
Antenna height of BS 25 m Flying altitude of UAV 100 m Length of sliding buffer Ny, ¢ 30
ITU building distribution parameter & 0.3 ITU building distribution parameter B 118 Positive special reward 7, 400
ITU building distribution parameter 5 25 Amount of buildings BD2 118 Negative special reward 7, -10000
Expected size of each building &/ 3 0.0025 km? Maximum height of buildings 70 m Learning rate o, Adam’s default
Transmit power of each sector P; 20 dBm Nakagami shape factor m for LoS/NLoS 31 Discount factor ~y 1
Transmission outage threshold T",,, 0 dB Average power of AWGN o2 -90 dBm Maximum training episodes temax 2000
Duration of time slot A, 05s Velocity of the UAV V,, 30 m/s Step threshold Nyax 400
Amount of signal Measurements L 1000 ‘Weight balancing the minimization T 50

1.0 70

Boresight

0.75 4

KBS

Building Height (m)

0.25 4

O Sector

0.0 T T T 0
0.0 0.25 0.5 0.75 1.0

Figure 2: The simulation environment

comparison, i.e., DRL-ER [12], DRL-PER [13], DCRL [14]
and SNARM [2].° For fair comparison, the structures of online
and target D3QNs for all baselines are the same as those of
the proposed DRL-QIiER solution, while the hyper-parameter
settings of DRL-QIER algorithm and these baselines are in line
with Table I. Besides, the construction of radio map’s DNN
and the corresponding hyper-parameter settings of baseline
SNARM are in accordance to [2], while the complexity index
function, the curriculum evaluation function, the self-paced
prioritized function, the coverage penalty function and the
corresponding DCRL hyper-parameter settings are in line with
[14]. Furthermore, the additional hyper-parameters regarding
PER in DRL-PER baseline are set as apggr = 1, £ = 0.01 and
Bper = 0.4. All the baselines are altered to involve multi-step
learning and start training after their replay buffers are fully
exploited. Moreover, all the baselines share the same randomly-
generated initial UAV locations with the proposed DRL-QiER
solution, for each training episode.

Fig. 3(a) delivers the performance comparison on moving
average returns of the proposed DRL-QiER solution and con-
sidered baselines, versus training episodes. From this subfigure,
it is easy to find that SNARM approach can offer satisfactory
learning performance, thanks to the simulated trajectories en-
abled by the extra DNN (i.e., the radio map), especially in the
range of training episode from 400 to 1000, despite that the
radio map is getting well trained as the training process going.
Besides, DRL-PER, DRL-QiER and DCRL approaches can
achieve better moving average returns than DRL-ER method,
in the early training stage (e.g., episodes 500-750). The reason

5Due to page-length regulation, the detailed explanations of these baselines
are omitted, which can be found in [7].

is that DRL-ER solution samples transitions uniformly with-
out considering their priorities, which leads transitions with
higher importance to have less opportunities for training the
online D3QN. However, DRL-PER method experiences server
fluctuations than DRL-QIiER and DCRL (e.g., episodes 1250-
2000), which is because DRL-PER does not take transitions’
replay time into account and thus some transitions are sampled
with undesired high frequency while their absolute TD errors
remain relatively large. The proposed DRL-QIiER solution
showcases more steady learning ability, with less amplification
of fluctuation and overall raising trend, thanks to the QiER
technique which balances sampling priority and diversity in
a better manner. Although SNARM and DCRL approaches
can offer satisfactory learning performances, their respective
shortcomings are: 1) SNARM framework needs to train an
extra DNN, which thus introduces heavy training burden, and
2) it is difficult to set up feasible complexity index function,
curriculum evaluation function, self-paced prioritized function,
coverage penalty function and the corresponding DCRL hyper-
parameters, which limits the robustness of DCRL solution. The
proposed DRL-QiER method requires less hyper-parameters
tuning and contains no extra DNN, and therefore is easier
and more robust for implementation. To deliver more insights,
Fig. 3(b) depicts the comparison on designed trajectories of
the implemented algorithms, over three representative starting
locations chosen from episodes 1910-2000. It is straightforward
to observe that the proposed DRL-QiER and the considered
baselines direct the UAV to hit the common destination with
different trajectories.

Fig. 4(a) demonstrates comparison on average time cost
of designed trajectories and the corresponding EOD for the
considered algorithms, over four episode slots 1-1400, 1401-
1600, 1601-1800 and 1801-2000. From this figure, one can
find that the proposed DRL-QiER solution can help achieve
both lower average EOD and average time cost, within each
episode slot. Especially, in the late training state (e.g., episode
slot 1800-2000), the proposed DRL-QiER method outperforms
other baselines, in terms of both average EOD and average time
cost. Furthermore, Fig. 4(b) illustrates comparison on average
duration and average weighted sum of EOD and time cost over
the last 200 training episodes, for all the DRL-aided approaches
and non-learning-based strategy termed as straight line. From
this figure, it is easy to find that while the straight line solution
offers the cheapest average time cost, it leads the UAV to
suffer from the highest average EOD, which is extremely non-
preferable and thus unveils the benefits provided by DRL-aided
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Figure 3: Performance comparison on moving average returns and designed trajectories
approaches. On the contrary, the proposed DRL-QIER solution
can not only help the UAV experience the lowest average EOD,
compared to both other DRL-aided approaches and the straight
line strategy, but also direct the UAV to reach the common
destination with the cheapest average time cost, against other
DRL-aided solutions.

V. CONCLUSION

In this work, an intelligent navigation task for cellular-
connected UAV networks was investigated, aiming at mini-
mizing the weighted sum of time cost and expected outage
duration alongside UAVs’ flying trajectories towards the com-
mon destination with randomly-generated initial UAV locations.
To navigate the UAV, a DRL-QIER solution was proposed, in
which the innovative QiER technique can help the DRL agent
hit a better learning efficiency. Simulation results validated
the effectiveness of the proposed DRL-QiER solution, while
performance comparison against both several DRL-aided base-
lines and straight line strategy showcased DRL-QiER method’s
superiority.
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