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Path Planning for Cellular-Connected UAV: A DRL
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Abstract—1In cellular-connected unmanned aerial vehi-
cle (UAV) network, a minimization problem on the weighted
sum of time cost and expected outage duration is considered.
Taking advantage of UAV’s adjustable mobility, a UAV nav-
igation approach is formulated to achieve the aforementioned
optimization goal. Conventional offline optimization techniques
suffer from inefficiency in accomplishing the formulated UAV
navigation task due to the practical consideration of local
building distribution and directional antenna radiation pattern.
Alternatively, after mapping the navigation task into a Markov
decision process (MDP), a deep reinforcement learning (DRL)-
aided solution is proposed to help the UAV find the optimal
flying direction within each time slot, and thus the designed
trajectory towards the destination can be generated. To help
the DRL agent commit a better trade-off between sampling
priority and diversity, a novel quantum-inspired experience
replay (QiER) framework is proposed, via relating experienced
transition’s importance to its associated quantum bit (qubit)
and applying Grover iteration based amplitude amplification
technique. Compared to several representative DRL-related and
non-learning baselines, the effectiveness and supremacy of the
proposed DRL-QiIER solution are demonstrated and validated in
numerical results.

Index Terms—Drone, trajectory design, deep reinforcement
learning, quantum-inspired experience replay.

I. INTRODUCTION

ITH flexible mobility, low cost and on-demand deploy-

ment, unmanned aerial vehicles (UAVs) have been
widely used in civilian scenarios, e.g., building safety
inspections, disaster management, material transport and aerial
photography [2]-[4]. In practice, simple point-to-point (P2P)
wireless links over unlicensed spectrum are commonly utilized
to support the communications between UAVs and ground

Manuscript received 15 September 2021; revised 23 January 2022; accepted
19 March 2022. Date of publication 4 April 2022; date of current ver-
sion 11 October 2022. The work of Yuanjian Li was supported by the
China Scholarship Council and King’s College London (joint full-scholarship
K-CSC) under Grant CSC201908350102. An earlier version of this paper
was presented in part at the IEEE ICC, Seoul, in May 2022 [1] [DOI:
10.48550/arXiv.2108.13184]. The associate editor coordinating the review of
this article and approving it for publication was W. Zhang. (Corresponding
author: Yuanjian Li.)

Yuanjian Li and A. Hamid Aghvami are with the Centre for Telecommuni-
cations Research (CTR), King’s College London, London WC2R 2LS, U.K.
(e-mail: yuanjian.li@kcl.ac.uk; hamid.aghvami@kcl.ac.uk).

Daoyi Dong is with the School of Engineering and Information Technology,
University of New South Wales, Canberra, ACT 2600, Australia (e-mail:
d.dong @adfa.edu.au).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TWC.2022.3162749.

Digital Object Identifier 10.1109/TWC.2022.3162749

nodes, leading to constrained communication performance [4].
To further enhance wireless transmission qualities between
UAVs and ground transceivers, cellular-connected UAV tech-
nique is deemed as a promising solution, via adopting
widely-existing terrestrial base stations (BSs) to help establish
high-quality ground-to-air (G2A) transmission links [5]-[7].
With the help of today’s mature cellular networks and authen-
tication mechanisms, cellular-connected UAV can help achieve
better reliability, security and transmission throughput for G2A
communications. Besides, cellular-connected UAV solution is
significantly cost-effective because no dedicated infrastruc-
tures for supporting G2A communications are needed to
construct and worldwide cellular BSs can be reused to aid
G2A transmissions.

Current cellular networks are genuinely established for
serving user equipments on the ground, via downtilting the
main lobe of BS’s antenna towards the earth. This char-
acteristic can enhance cellular coverage facing the ground
but the quality of cellular-aided G2A transmissions cannot
be guaranteed in general [5]. To investigate wireless cover-
age support of current cellular network for UAVs, Lyu and
Zhang [8] proposed a novel analytical framework for char-
acterizing G2A uplink/downlink transmissions, where down-
tilted vertically-directional radiation pattern of BS’s antenna
is taken into account. Besides, more severe inter-cell inter-
ferences (ICIs) introduced by line-of-sight (LoS)-dominated
G2A links can further deteriorate the aerial coverage issue,
compared to terrestrial communication scenario where non
line-of-sight (NLoS) channels are most likely experienced [9].
Fortunately, the controllable mobility feature of UAV makes it
possible to tackle the aforementioned aerial coverage obstacles
via UAV trajectory planning, either by on-board algorithms
or remote pilots. The UAV navigation approach takes advan-
tage of an extra degree of freedom, i.e., UAV’s mobility,
to realize aerial coverage enhancement and thus poses less
or even no requirements on reconstruction of existing cellu-
lar infrastructures. Zhang et al. [7] studied cellular-connected
UAV’s mission completion time minimization problem via
invoking graph theory and convex optimization to design
the optimal flying trajectory from an initial location to a
destination, subject to connectivity constraint of the G2A link.
Zhan and Zeng [10] maximized data uploading throughput
for cellular-connected UAV under constraints of energy cost
and minimum transmission rate threshold, via path planning
with the help of successive convex approximation (SCA)
technique. Bulut and Guevenc [11] proposed a dynamic
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programming solution to help cellular-connected UAV find
the best travelling path, subject to a continuous disconnection
duration restriction. Other than UAV trajectory design for
cellular-connected UAV network, Hu er al. investigated joint
optimization problems on energy consumption and path plan-
ning for scenarios of UAV-aided legitimate monitoring [12]
and covert UAV-on-UAV video tracking and surveillance [13],
where the specific optimization goals are both solved via con-
vex optimization techniques. However, standard off-line opti-
mization approaches solving trajectory design problem suffer
from inefficiency due to non-convex nature of the formulated
optimization objective and the corresponding constraints, even
under impractical assumptions where perfect knowledge of
wireless environment is available, e.g., G2A channel model
and BS antenna model. Fortunately, reinforcement learn-
ing (RL) serves as a good complement to traditional off-line
optimization solutions, which is famous for the favourable
ability of learning unknown environment in a trial-and-error
manner [14]. Up to date, RL-related techniques have been
widely applied to help solve performance optimization prob-
lems for UAV-mounted networks, e.g., radio resource alloca-
tion, interference mitigation and path planning. Cui et al. [15]
investigated a real-time design on resource allocation for
multiple-UAV network, in which multi-agent reinforcement
learning (MARL) framework was proposed to realize optimal
user selection, power allocation and sub-channel association.
Zeng et al. [5] investigated an optimal UAV trajectory planning
problem on minimizing the weighted sum of mission comple-
tion time and expected transmission outage duration, via deep
reinforcement learning (DRL)-aided approaches. Meanwhile,
quantum theory has been proven to pose a positive impact
on improving learning efficiency for artificial intelligence
algorithms in general, and RL-related approaches in par-
ticular. Dong et al. [16] combined quantum parallelism into
conventional RL frameworks (termed as quantum RL (QRL)),
in which higher learning efficiency and better trade-off
between exploration and exploitation were showcased. Fur-
thermore, Dong et al. [17] proposed quantum-inspired rein-
forcement learning (QiRL) to solve intelligent navigation
problem for autonomous mobile robots, where probabilistic
action selection method and novel reinforcement approach
inspired by quantum phenomenon were integrated into stan-
dard RL frameworks. Paparo et al. [18] showed that quadratic
speed-up is achievable for intelligent agents, with the help of
quantum mechanics. Dunjko et al. [19] extended traditional
agent-environment framework into quantum region, while
Saggio et al. [20] demonstrated the first experimental result
of QRL. In [21], Li et al. compared QRL with several RL
frameworks in human decision-making scenarios, suggesting
that value-based decision-making can be illustrated by QRL at
both the behavioural and neural levels. In the field of wireless
communications, Li er al. [22] investigated an optimal path
planning problem for UAV-mounted networks, in which QiRL
solution was demonstrated to offer better learning performance
than conventional RL methods with e-greedy or Boltzmann
action selection policy.

In this paper, we integrate several ideas in quantum mechan-
ics and DRL techniques to solve intelligent trajectory planning
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problem for cellular-connected UAV networks. The main con-

tributions of this paper are summarized as follows.
o Different from the vast majority of existing literature,

more practical G2A pathloss model based on one realiza-
tion of local building distribution and directional antenna
with fixed 3-dimensional (3D) radiation pattern are con-
sidered in this paper. Then, a cellular-connected UAV
trajectory planning problem is formulated to minimize the
weighted sum of flight time cost and the corresponding
expected outage duration. Without prior knowledge of the
wireless environment, the focused path planning problem
is challenging to be tackled via conventional optimiza-
tion techniques. Alternatively, the proposed optimization
problem is mapped into Markov decision process (MDP)
and solved by the proposed DRL solution with novel
quantum-inspired experience replay (QiER).

o A novel QIER framework is coined to help the learn-
ing agent achieve better training performance, via a
three-phase quantum-inspired process. Specifically, the
quantum initialization phase allocates initial priority for
the newly-recorded experiences, the quantum preparation
phase generates the updated priority for the sampled
transitions with the help of Grover iteration, and the quan-
tum measurement phase outputs distribution of sampling
probabilities to help accomplish the mini-batch training
procedure.

o To demonstrate advantages offered by the proposed
DRL-QiER solution, performance comparison against
representative baselines is performed. Compared to DRL
approach with standard experience relay (DRL-ER)
[23] or prioritized ER (DRL-PER) [24], deep curricu-
lum reinforcement learning (DCRL) method [25] and
simultaneous navigation and radio mapping (SNARM)
strategy [5], simulation results demonstrate that the pro-
posed DRL-QiER solution can achieve more efficient
and steady learning performance. Moreover, the pro-
posed DRL-QiER does not include extra neural net-
works like SNARM approach, and requires much less
hyper-parameter tuning like DCRL or DRL-PER method,
which means that it is easier and more robust for
implementation.

Although this paper and [5] both focus on designing a
DRL-aided solution for intelligently navigating cellular-
connected UAYV, the main differences are: 1) detailed antenna
gain model and pathloss model are provided in this paper,
which makes the formulated UAV navigation problem more
specific; 2) to overcome the bias issue and relieve the heavy
computation burden induced by the extra neural network of
SNARM approach [5], i.e., the model-learning component
termed as radio map, a light but reliable DRL-QiER solution
is proposed, which is model-free and contains only one
online training neural network; and 3) quantum mechanism is
introduced to aid experience replay efficiency for DRL agent,
enabling the proposed DRL-QIER solution have the potential
to perform outstandingly than conventional DRL methods.
Moreover, with the help of Grover iteration in quantum
computation, we extend the QiER method in [26] from
2-dimensional (2D) discrete rotation to its 3D continuous
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alternative, which introduces fewer additional hyper-
parameters and thus makes the QiER technique more flexible
and reliable. Last but not least, compared to our prior
work [22], we extend the quantum aid from enhancing action
selection quality for RL framework to improving experience
replay performance for DRL counterpart, breaking the curse
of dimensionality and enabling the agent to practically solve
problems with continuous state space.

Organization: Section II presents the system model.
Section III gives a brief overview on DRL. Section IV briefly
introduces quantum state and quantum amplitude amplifica-
tion. Section V presents the proposed DRL-QIiER solution.
Simulation results are given in Section VI, while conclusions
are drawn in Section VII.

II. SYSTEM MODEL

A downlink transmission scenario inside cellular-connected
UAV network is considered, where a set U of U UAVs is
served by a set B of B BSs within cellular coverage. These
UAVs are supposed to reach a common destination from
their respective initial locations, for accomplishing their own
missions.! Intuitively, each UAV should be navigated with a
feasible trajectory, alongside which the corresponding time
consumption should be the shortest and wireless transmission
quality provided by the cellular network should be maintained
satisfactorily.” Without loss of generality, an arbitrary UAV
(denoted as w hereafter) out of these U drones are concen-
trated for investigating the navigation task.® For clarity, the
UAV’s exploration environment is defined as a cubic subregion
A [0, Tup) X [Yio, Yup] X [210, 2up], Where the subscripts
“lo” and “up” represent the lower and upper boundaries of
this 3D airspace, respectively. Furthermore, the coordinate
of the focused UAV at time ¢ should locate in the range
of Gio = Gu(t) = qup> Where Gi, = (%10, Y105 210) Gup =
(@up, Yup, zup) and =< denotes the element-wise inequality. The
initial location and the destination are given by ¢,(I) €
R™*3 and g, (D) € R'*3, respectively. Therefore, the overall
trajectory of this UAV’s flight can be fully traced by ¢, (t) =
(0 (t), Yo (t), 24, (t)), starting from ¢, (I) and ending at ¢, (D).
Besides, the location of arbitrary BS b € B is indicated as
@ = (v, Y, 2), Where Gio < Gb = Qup-

A. Antenna Model

Terrestrial transmission usually assumes that the distance
between transceivers is much greater than the height dif-
ference of their antennas. In this regard, antenna modelling
for terrestrial communications mainly concerns 2D antenna
gain on the horizontal domain. Unfortunately, 2D antenna

!For example, one typical UAV application case is parcel collection. Various
UAVs are launched from different costumers’ properties carrying parcels to the
local distribution centre of delivery firm. Besides, collision avoidance during
UAVs’ flights needs to be guaranteed, via separating UAV’s operation spaces
and keeping their flying altitudes higher than the tallest building.

2This paper concentrates on UAV navigation task within coverage of cellular
networks, while global positioning system (GPS)-supported UAV navigation
is beyond the scope of this paper and left as one of future research directions.

3These UAVs share the same airspace and common location-dependent
database, which means that the trained DRL model can be downloaded by
the remaining UAVs, helping them accomplish their navigation tasks.
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modelling is not sufficiently feasible for G2A transmissions,
where high-altitude UAVs are involved.

In compliance with BS’s antenna modelling of current
cellular networks, directional antenna with fixed 3D radiation
pattern is assumed to be equipped at each BS. Following
standard sectorization, each BS is portioned to cover three
sectors. Therefore, there are 3B sectors in total within the
interested airspace A. Specifically, it is assumed that three
vertically-placed M -element uniform linear arrays (ULASs)
are equipped by each BS with boresights directed to their
corresponding sectors covered by this BS, subject to the 3GPP
specification on cellular BS’s antenna model [27]. In individ-
val and independent coordinate system of each ULA (e.g.,
Fig. 1(a)), antenna element’s placing location is denoted as
(0,0, 21, ), where m = {1,2,..., M}.

Then, the wave factor of ULA can be given by

k= 277[- (Sin HULA COS ¢ULA; sin HULA sin ¢ULA; COS eULA) s (1)
where A = ¢/ f, represents the wavelength, ¢ denotes the light
speed and f. indicates the carrier frequency. Furthermore, the
steering vector can be derived as

. . T
50 =[exp(=7K(0,0,21)7), ..., exp(~jk(0,0,20)7)] . (@)

Suggested by 3GPP, vertical and horizontal radiation patterns
in dB of each ULA are given by

o . fuLa—90%\°
AV(HULA;¢ULA:O )Z—mln 12— 73OdB s (3)
O34

2
Apr (Bua=90°, dura) =—min {12 (¢ULA> ,30dBY, (4)
D3

respectively. Then, each ULA’s 3D element pattern in dB can
be calculated as

A (BuLa, puLa) = — min{—[Ay (Bura, puLa = 0°) +
Ap (BuLa = 90°, ¢ura)], 30dB} . (5)

Note that each antenna element of a ULA is directional, speci-
fied by half-power beamwidths O34p and P34p for the vertical
and horizontal dimensions, respectively. To suppress ICIs in
cellular networks, the main lobe of ULA’s radiation pattern
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should be electrically steered by fetr € [0°,180°], where
Octite = 90° means perpendicular to the ULA. To achieve the
steering angle 6..;;;, fixed phase shift for each antenna element
of ULA can be executed, for which the complex coefficient
of the m-th antenna element is given by

1 27
77 &P |:—]7(m — 1)dy cos Octire | (6)

Wm =

where d, indicates the vertical elements’ spacing distance.
Furthermore, the array factor can be formulated as

M
AF =Y wp exp(—jk(0,0, 2,)") = dsb, ™
m=1
where & = (wi,...,wy)* is the weight vector and the

superscript * indicates the complex conjugate. In the end, the
3D antenna gain of each ULA in dB can be calculated as

G (B, dura) = 101g [ [V 105 ap2 ) (8

Fig. 1(b) illustrates an example for 6.:;; = 100°, under
parameter setting Osqp = P3qp = 65°, d, = A/2 and M = 8.
It is straightforward to observe that the main lobe is downtilted
towards the ground for serving terrestrial communications,
and the upper side lobes can be utilized to support G2A
transmissions. Denote 7 € {1,...,3B} as the label of sectors
in the considered region. Then, the transmit antenna gain from
arbitrary sector to the UAV can be explicitly determined by
UAV’s location, denoted as G*[q,(t)] = G (0iu, in), Where
0., and ¢;, can be obtained via taking ¢, (t), the location
of ULA for sector ¢+ and the ULA’s boresight direction into
account.*

B. Pathloss Model

Different from terrestrial transmissions, G2A links are more
likely to experience LoS pathloss. In this subsection, the
adopted G2A channel model will be interpreted.

According to 3GPP urban-macro (UMa) pathloss
model [28], the G2A pathloss in dB from sector ¢ to
the UAV at time ¢ is given by

28.0+22 loglo (dqlt)+20 1Og10 (fc) s LoS

P 4 .
PL* [ (1)] = —17.5—|—2010g10( ng“>

+ [46—"T1og;, (2u(t))]l0g1o (din), NLoS,
©)
where d;, = ||¢.(t) — qi||2 outputs the Euclidean distance

between the UAV and the location of ULA for sector 4.

To practically trace the type of G2A pathlosses, building
distribution in the interested airspace A should be taken into
consideration. Fig. 2 illustrates an example of local building
distribution, including their horizontal locations on the ground
and heights (Fig. 2(a)), as well as the corresponding 3D view

4Note that the location of ULA for sector i is assumed to be the same as
its associated BS, which is a reasonable consideration because the distance
among ULAs on the BS is much smaller than that between the UAV and the
BS.
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(Fig. 2(b)). With given building distribution, the type of
large-scale pathloss of G2A channels for UAV at arbitrary
location ¢, (t), i.e., LoS or NLoS in (9), can be accurately
determined via checking the potential blockages between the
UAV and sectors.’

C. SINR at UAV

With the aforementioned antenna and pathloss models, the
received signal of the focused UAV u at arbitrary location @,
over time ¢ can be formulated as

35 L[ G, (£)] —PLE G (E
vu()=3" \/ 10T () + na(t), (10)

where z;(t) ~ CN(0, P;) is the emitted message from sector
i to the UAV with average transmit power P;, h;, represents
the corresponding small-scale fading channel® and n,(t) ~
CN(0,0?) denotes the received additive complex Gaussian
noise (AWGN) at the UAV. Note that the explicit type of
pathloss, i.e., LoS or NLoS, can be determined via checking
possible blockages according to one realization of local build-
ing distribution as mentioned in Section II-B. Assume that the
UAV is associated with sector 7 at time t, the instantaneous

SNote that our method generating G2A pathloss is more practical than the
widely-used probabilistic G2A channel model in current literature because
the later can only characterize the average G2A pathloss rather than its real
counterpart.

®This paper aims to develop a UAV navigation method for arbitrary
small-scale channel model. Hence, we do not specify the type of small-scale
fading here, e.g., Rayleigh [29]-[33], Rician [34], [35] or Nakagami-m [36].
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signal-to-interference-plus-noise ratio (SINR) at the UAV can
be derived as

G [ (O] =PL (74 (8)]
P10 10 - 12
() = — il 1
! ( ) I, (t) + 02 b
where Iu(t) = 21,757,1310 qu(t) L (G (1)) |hiu|2 means the

ICIs from un-associated sectors.’

D. Problem Formulation

The received SINR (11) is a random variable because
of the randomness introduced by small-scale fadings, with
given UAV coordinate g, (t) and cell association 7(t). There-
fore, the corresponding transmission outage probability (TOP)
can be formulated as a function of ¢, (t) and i(t), ie.,
TOP,{Gu(t),i(t)} = Pr[[y(t) < T, where Pr outputs
the probability calculated with respect to (w.r.t.) the afore-
mentioned small-scale fadings. Then, the ergodic outage
duration (EOD) of the UAV wu travelling with trajectory
qu(t),¥t € [0,T,] from G,(I) to ¢,(D) can be expressed
as

Ty
EODAz, (1))} = [ TOPa.).it}ar. (12

According to (12), the UAV has more freedom to adjust
its flying trajectory for visiting stronger wireless coverage
areas (say, regions with lower TOP) if longer flight time
budget T, is achievable. However, T}, is commonly expected
to be as short as possible, for the consideration of energy
consumption and time cost for accomplishing the correspond-
ing mission. Therefore, a dilemma of minimizing both T},
and FOD, exists inevitably. To balance this, we focus on
minimizing the weighted sum of T}, and EOD, {q,(t),i(t)}
via designing ¢, (t) and 7(t). Unfortunately, continuous time
t implies infinite amount of velocity constraints and location
possibilities, leading the UAV path planning task too sophis-
ticated to be handled. Alternatively, the flight period T, is
uniformly divided into N time slots, making the navigation
task practically trackable. The duration of each time slot
A; = T, /N is controlled to be sufficiently small so that
the distance, pathloss and antenna gain from each sector
towards the UAV can be considered as approximately static
within arbitrary time slot.® Besides, sector assignment is
commonly dependent on pathloss to avoid non-stop handover
in practice, and thus the associated sector within each time slot
is assumed unchanged. Therefore, (12) can be approximated
as EOD{q.(t),i(t)} =~ Zf:;l ATOP{G,(n),i(n)}. With
given G, (n) and i(n) for each time slot, TOP,{7.(n),i(n)}
can be obtained via numerical signal measurement at the

"This paper focuses on the worst case where universal frequency reuse is
assumed, which means that all the non-associated co-channel sectors will be
taken into account as the sources of ICIs.

8In the case of Ay — 0, the discrete flight trajectory can accurately
approach its continuous counterpart, resulting in extremely heavy computation
burden. Therefore, the length of time slot A¢ should be delicately chosen to
achieve satisfactory balance of approximation accuracy and computational
complexity.
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UAV.’ In this regard, we have

L
TOP{Gu(n),i(m)} =7 3" ITOP{G(n),im)h()}. (13)
=1

where h(¢) indicates one realization of the involved small-scale
fading components, L represents the amount of signal mea-
surements, the TOP indicator ITOP{q,(n), E(n)Jh(L)} =1if
Tu{qu(n),i(n)|h()} < Ty and ITOP{G,(n),i(n)|h(s)} =
0 otherwise. Note that L > 1 stands in practice, which means
that the approximation (13) is feasible to be treated as an
equation. Then, the corresponding optimization problem can
be stated as

(P1) ggg—ZZITOP{qu n), i)} + N,
e (14a)
st.i(n) = argmin PL'[G,(n)], (14b)
i€{1,2,....3B}
g(n +1) = q(n) + Vu Byt (n),
[Tu(n) ]| =1, (14c)
qiojq_;t(n) = (jllp7 (Tu(o):q_;t(l)a
7u(N)=qu(D), (14d)

where T is the weight balancing the aforementioned minimiza-
tion dilemma, V,, represents the UAV’s flying velocity and
Uy (n) specifies the mobility direction. The constraint (14b)
holds because the sector association strategy is dependent
sorely on pathlosses from all the sectors within each time slot
and it is clear that the UAV should always pair with the sector
which can offer the least degree of pathloss.

It is straightforward to conclude that antenna gain and
LoS/NLoS condition from each sector to the UAV are depen-
dent on the UAV’s location with given building and BS
distribution, which further impacts the corresponding pathloss
and type of small-scale fading. This makes it extremely
sophisticated to solve problem (P1) via standard optimization
methods, if not impossible. To provide a better alternative
solving the proposed optimization problem (P1), a DRL-aided
solution with a novel QiER framework is proposed in this

paper.

III. DEEP REINFORCEMENT LEARNING

This section is established to give a brief introduction
to DRL basics, which is of importance for understanding
the proposed DRL-aided solution and the corresponding key
notations.

The training of RL agent is based on MDP consisting
of five components, listed in a tuple (S,.4,7,r,v). A state
s¢ € S denotes RL agent’s observation from the environment
at trial ¢. An action a; € A represents the agent’s choice

9The closed-form expression of TOP,{d.(n),%(n)} cannot be derived
because this paper aims to develop a UAV navigation framework for
arbitrary small-scale fading environment and the modelling of hj,,7 €
{1,2,...,3B} is not specified. Besides, A; (typically on the magnitude of
second) is relatively greater than the length of channel coherence block (on
the magnitude of millisecond) caused by the small-scale fading. Therefore,
TOP,{§u(n),1(n)} can be practically evaluated by numerical measurements
on the raw received signals at the UAV.
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at trial ¢ following an action selection policy (s, at). The
policy m(st,ar) : & x A — [0,1] claims the probability
distribution of picking action a, for state s;, constrained
by > ,,cam(st,ar) = 1. After executing an action, state
transition function 7=Pr(s;y1|s¢,ar) : S x Ax S — [0,1]
characterizes state transition s; — s;41. An immediate reward
r¢(s¢,a¢) acts as performance metric determining how good
the selected action a, is, for state s;. A scalar factor v €
[0,1] is invoked to discount future rewards, which can help
reduce variance caused by the reward function and achieve
the convergence of RL algorithms.

While interacting with the environment, the RL agent
chooses an action a; for observed state s; at trial ¢ following
current action selection policy 7 (s, a;). After executing the
selected action, state transition s; — S;41 occurs and a
scalar reward r;(s;,a;) will be generated. Then, the experi-
ence exp = {S¢,at, e, St41} can be collected to train the
RL agent. The state-action value function Q.(s:,a:) (.e.,
Q function) derives the accumulated-rewards and reflects the
long-term return of acting a; over s, following action selection
policy 7, given by

+oo
QH%WPErQZE:WWMMFWM:%7U$
n:=0
where G calculates the discounted accumulated-rewards. The
state-action value function Qr(s:,a;) satisfies the Bellman
equation, shown as

Qn(si,ar) = Ex |10+ Z T (st41lst, 1)
st41€S

X Z T(St41, A1) Qr (St41, Qry1) (16)

at1€A
An important goal of RL agent is to find the optimal
Q function which follows Bellman optimality equation [37],
shown as
Q" (styar) = 7o+ Y T(ser1]se, ar) max Q(se+1,41)-

€A
S5t41E€ES Gt+1
(17)

Unfortunately, (17) is non-linear and admits no closed-
form solution, which can alternatively be solved through
iterative algorithms [38]. Specifically, (17) can be deduced
recursively to achieve the optimality Q* (s, a;) via temporal
difference (TD) learning, given by.

Q(stv at) — Q(st; at)
+age |1+ max Q(seq1, ary1) — Q(se,a)|,  (18)
at1€A

where 6, = r; + maXAQ(stH, ai+1) — Q(st, ay) represents
at41€
the TD error and «y. € (0,1] denotes the learning rate.

It is well-known that the optimum Q*(s¢, a;) can be achieved
when the state-action pairs are sufficiently experienced and the
learning rate is properly chosen [37].

To crack the nut rooted from high-dimensional state and/or
action spaces, instead of applying Q-table (e.g., tabular RL) to
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store (s, ay) for state-action pairs, function approximation
technique is used to approximate the Q function, e.g., artificial
neural networks (ANNs). Adopting DNN [39] (i.e., ANN
with deep hidden layers) to approximate Q function, e.g.,
deep Q network (DQN) [23], is a popular and practical
solution, i.e., Q(s¢, ar) =~ Q(st, a+|@), where parameter vector
6 corresponds to the weight coefficients and biases of all
links in the DNN. The parameter vector 8 can be updated via
bootstrapping method to minimize the loss function, defined
as
2

L(0)=|ri+y magAQ(StH’at+1|97)—Q(8t,at|‘9) , (19)
at4+1

where Q(s¢,at|@) with parameter vector 8~ indicates the
target network, which is applied to enhance the stability of
learning process.

Standard DRL algorithms apply one-step information to
calculate the loss function (19) and train the online net-
work, which may not be adequate and thus lead to poor
predictability. To overcome the aforementioned shortcoming,
multi-step learning strategy [37] was proposed via taking N, ;-
step-forward knowledge into account. Specifically, the N,,s-
step discounted accumulated-reward from a given state s; can
be rewritten as 7y.44 N, = ZnN":_Ol Ao, 1. Based
on (19), the loss function for [V, s-step learning can be derived
as

£(6) =

Ttit4+ N s

+VN

" maXQ(St4N,,,, @' [07) — Q(se, ar|0) (20)
a’eA

IV. QUANTUM STATE AND QUANTUM
AMPLITUDE AMPLIFICATION

In this section, several basic concepts in quantum com-
putation are briefly introduced, which is of essence to help
understand the proposed QiER framework.

A. Quantum State

In quantum mechanics, a quantum state of a closed quantum
system can be described by a unit vector in Hilbert space.
Specifically, a quantum state |¥.) (Dirac notation) comprised
of A quantum bits (qubits'®) can be expressed as

n

11...1
Ty =[T) @ W) @@ |Wa) = > hylp), Q1)
p=00...0

where |¥.),e € [1,7] represents the e-th qubit, h, means
the complex coefficient (i.e., probability amplitude) of eigen-
state [p) subject to 3 1o o|hp> = 1 and ® denotes
the tensor product. The representation of n-qubit quantum
state |U.) follows the quantum phenomenon known as state
superposition principle. That is, the |¥.) can be regarded as

10A qubit can be realized by a two-state system, e.g., 1) a two-level atom,
in which |0) denotes the ground state and |1) indicates the excited state; 2) a
photon, where |0) represents the horizontal polarization state and |1) means
the vertical polarization state; or 3) a spin system, in which the states of spin
up and spin down are described by |0) and |1), respectively.

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on October 27,2022 at 16:20:33 UTC from IEEE Xplore. Restrictions apply.



LI et al.: PATH PLANNING FOR CELLULAR-CONNECTED UAV: DRL SOLUTION WITH QiER

the superposition of 2" eigenstates, ranged from [00...0)
to [11...1). As a special case, a two-eigenstate quantum
system (say, a single qubit) can be described as an arbitrary
superposition state of eigenstates |0) and |1), given by

W) = al0) +61),

where the complex coefficients « = (0 | ¥) and 5= (1| )
denote the probability amplitudes for eigenstates |0) and |1),
respectively. Note that the single-qubit superposition |¥) is
a unit vector (i.e., (U | ¥) = 1) in Hilbert space spanned
by orthogonal bases |0) and |1), subject to |a|> + |B]? = 1.
According to quantum collapse phenomenon, after measure-
ment or observation of an external experimenter, |¥) will
collapse from its superposition state onto one of its eigenstates
|0) and |1) with probabilities || and |3|?, respectively.

(22)

B. Quantum Amplitude Amplification

For a two-eigenstate qubit |¥), the probability amplitudes
of each eigenstate can be changed via a quantum operation
(e.g., Grover iteration [40]), gradually modifying the collapse
probability distribution. Two unitary reflections are applied to
achieve Grover iteration, given by

Ujy =T —(1—¢"1)0) (0],
Uy = (1—€%)|0) (V| -1,

(23)
(24)

where {¢1, ¢2} € [0, 27], I indicates identity matrix, and (0]
and (P| are Hermitian transposes of |0) and |¥'), respectively.
Then, the Grover iterator can be formulated as G = U |y, U |,
which remains unitary. After m times of acting G on |¥),
the two-eigenstate qubit with updated probability amplitudes
can be given by |U) «— G™ |¥). Two updating approaches
can be used to accomplish quantum amplitude amplification
task: 1) m = 1 with dynamic parameters ¢; and ¢o; and
2) dynamic m with fixed parameters ¢, and ¢o (e.g., m).
The latter updating method can only change the probability
amplitudes in a discrete manner, and thus the former solution
is chosen in this paper.

Proposition 1: For Grover iteration with flexible parame-
ters, the overall effects of G on the superposition |¥) can
be derived analytically as G |¥) = (Q — €/?1)a |0) + (Q —
1)B[1), where @ = (1 — €7%2)[1— (1 —¢ei?)|af?] and
(Q —e/*)]?[al* +[(Q - 1PP|B* = 1.

Proof: The effects of Uy on |0) and [1) are expressed
as

Uloy [0) = [T = (1 =€) ]0) (0[] [0) = &7** 0}, (25)
Uy 1) = [T = (1 =€) [0) (0] 1) = [1), (26)
respectively. Then, we obtain
Uloy W)= [T—(1—-e) [0) (0[] [¥) =’ a [0)+B[1), (27)

where U oy plays the role as a conditional phase shift operator.
Furthermore, we get

G V) = U, Upy [¥) = (1 - 7%%) [a[0) + B[1)]
x [0+ BT (1] Ujoy |[¥) — Ujo) | V)

= (Q—€)al0) +(Q-1)31), (28)
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(a) Grover rotation on |¥) (b) Grover rotation on |+)

Fig. 3.  Geometric explanation of the grover rotation.

where Q@ = (1 — ei2)(ed%1|al? + |B]?) =
el92) [1 - (1- ej¢1)|a|2].

Because Grover operator GG is unitary, the updated super-
position |¥) — G|V) still follows the normalization rule
of probability amplitudes, ie., [(Q — ¢/®1)|al? + |(Q —
DE[B2 = 1. .

Corollary 1: The ratio between collapse probabilities of
|¥) — |0) before and after being impacted by G can be given
by |R|?=|(1—eI? —ei?2)—(1—ei?1)(1—e/?2)|al?|?, which
is symmetric w.r.t. ¢1 = ¢9 and ¢1 = 2m — ¢o. Then, the
updated collapse probabilities onto eigenstates |0) and |1) can
be given by |R|?|a|? and 1 — |R|?|a|?, respectively.

Proof: Based on (22) and (28), the ratio between the
probability amplitudes of |0) after being acted by G and before
that can be derived as R = (1 —e/%t —ei%2) — (1 —ei®1)(1 —
e992)|a|?, which completes the proof. [

Remark 1: The process of |¥U) <« G |V¥) can be depicted
geometrically on the Bloch sphere. In Fig. 3(a), |¥) is recon-
structed in Polar coordinates, given by

(1 -

|\Il>:ej<(cosg 0) + &7 sinQ 1)) ~ cosg |0)
2 2 2
+ 7% sing 1), (29)

where e7¢ poses no observable effects [21]. Then, the unit
vector |¥) on the Bloch sphere is uniquely specified by angle
variables 6 € [0, 7] and ¢ € [0, 2m). The effect of U oy can be
regarded as a clockwise rotation around the z-axis by ¢; (the
red circle) on the Bloch sphere, leading to the rotation from
|¥) to |¥'). In a similar manner, when the basis is changed
from {|0),[1)} to {|¥),|U+)}, Uy results in a clockwise
rotation around the new z-axis |¥) by ¢2 (the blue circle),
rotating |¥’) to ‘\I/(l)>. Hence, the overall impact of G on
|¥) is a two-step process rotating the polar angle 6, on the
perspective of basis {|0),|1)}. With flexible ¢; and ¢o, it is
possible to achieve arbitrary parametric rotation on the Bloch
sphere, which serves as the foundation for quantum amplitude
amplification task. The smaller 6 is, the higher probability
|¥) will collapse onto |0) when it is observed by an external
examiner, and vice versa.

V. DRL-QiER ALGORITHM

In this section, a DRL-QIER solution is developed to solve
optimization problem (P1).
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A. The MDP Formulation

To solve the optimal trajectory planning problem (P1) via
DRL-aided technique, the first step is to map it into an MDP,
which can be described as follows.

o &: The state space consists of possible UAV locations ¢,
under constraint i, = ¢, = ¢up, Which means that the
state space is continuous.

o A: The continuous action space involves all the feasible
flying directions ¢, under constraint ||¢,|| = 1. To break
the curse of dimensionality caused by continuous state
and action spaces, the action space is discretized as A =
{[L 07 0]7 [07 ]-a 0]; [_17 Oa 0]; [Oa _]-7 0]7 [\/§/2a \/§/2a 0];
[_\/5/27 \/5/25 O]a [\/5/27 _\/5/25 O]a [_\/5/25 _\/5/27
0]}, corresponding to flying directions right, forward,
left, backward, right-forward, left-forward, right-
backward and left-backward, respectively. Therefore,
the action space contains Ny; = 8 direction
options.

o 7: The state transition is deterministic and controlled by
the mobility constraint (14c).

e 7: Our goal is to minimize the weighted sum of time
cost and EOD. Thus, we may design the reward func-
tion as 7(q,) = —1 — 2+ S°F  TTOP{q,|h(1)}. The
formulation of 7(g,) can be interpreted as follows:
1) for each time of state transition, the agent will receive
a movement penality 1, encouraging the UAV to use
less steps to generate the trajectory; and 2) on top of
the movement penality, the UAV will get a weighted
outage duration penality Tf‘ Zle ITOP{G,|h(¢)} as
well, pushing the UAV to visit locations with stronger
wireless coverage quality. Besides, two special cases
are considered as follows: 1) once the UAV reaches
the predefined destination @, (D), the training episode
terminates and a positive value rp will replace the reward
function; and 2) once the UAV crashes onto the boundary
of the considered airspace, the training episode terminates
and a negative value r,; will replace the reward function
instead. In summary, the aforementioned design of reward
function aims to encourage the UAV to reach ¢, (D) with
as fewer steps as possible, while avoiding hitting the
boundary and visiting areas with weak wireless coverage
strength.

o 7: To connect the objective function of (P1) and the dis-
counted accumulated-rewards over each learning episode,
the discount factor is chosen as v = 1.

B. Quantum-Inspired Representation of Experience’s Priority

In the proposed DRL-QiER solution, the priority of expe-
rienced transition exp; is represented by the k-th qubit,
where the scalar index k£ indicates this transition’s loca-
tion index in the QIiER buffer. Specifically, the quantum
representation of stored transition’s priority can be given
by

|Wy) = i 0) + Bk 1),

where the complex-valued probability amplitudes «j and
B follow the normalization constraint |az|? + B> = 1.

(30)
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It is worth noting that the eigenstates |0) and [1) in (30)
mean accepting and denying this transition, respectively. After
quantum measurement, the superposition |¥) will collapse
onto eigenstate |0) with probability | (0 | W) |> = |ax|? or
eigenstate |1) with probability | (1| ¥y)[? = |Bx|?. The
complex coefficients cy, and J are of importance and essence
in the QiER system, influencing the occurrence probability of
accepting or denying the corresponding transition when |U;)
is observed. The quantum representation |W) establishes a
bridge between quantum eigenstates and accepting or deny-
ing particular transition, which allows us to apply quantum
amplitude amplification to realize manipulation of quantum
collapse.

C. QiER Framework

The proposed QIiER framework consists of the following
three phases.

1) Quantum Initialization Phase: When transition exp; is
stored into the QIiER buffer with finite capacity C, a label
k€ {1,...,C} will be assigned to exp;, which specifies
the location of exp; being recorded within the QiER buffer.!!
Then, experience exp; and the k-th qubit |Uy) together will
be stored into the QiER buffer, which can be regarded as a
collection of (exp;, |¥x)). When a new transition is recorded
into the QiER buffer and before being sampled out to feed the
training agent, its associated qubit |¥) should be initialized
as eigenstate |0), i.e., |¥Us) « |0). The reason is that the
agent has never been trained with these un-sampled transitions
that may have unimaginable potentials to help the agent learn
the characteristics of environment with which the agent is
interacting. Thus, we set these newly-recorded transitions with
the highest priority, encouraging the agent to more likely learn
from them.

2) Quantum Preparation Phase: After an experience is
sampled from the QiER buffer to train the agent, the quan-
tum preparation phase should be performed on its asso-
ciated qubit, updating the corresponding priority. This is
due to two reasons: 1) the TD error of this transition
is updated; and 2) the experience becomes older for the
agent.

The uniform quantum state is defined as

=2 o)+ ).

which can be understood as a unit vector on the x-axis of
Bloch sphere (Fig. 3(a)) with § = 7/2 and ¢ = 0. The
absolute value of TD error |d;| is chosen to reflect priority of
the corresponding transition exp;. Once a recorded transition
is sampled, its associated qubit |¥) should first be reset to
the uniform quantum state, i.e., |¥;) < |+). Then, to map
the updated priority of exp; into |¥y), one time of Grover
iteration with flexible parameters will be applied on the

+) €19

"'The QIiER buffer is designed to be with fixed-size capacity in line with
standard ER technique of DRL, which means that the first stored experience
will be popped out first to create space for recording the new-coming transition
when the QIiER buffer is fully exploited. Therefore, each recorded experience
is supposed to remain in the buffer for a fixed time.
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uniform quantum state, shown as

(@) 6y V2
V) =UyUjg) |[+) = (P = &)=~ 10)
2
cP-0 2. G
where P = (1 — e7%2) [1 — 0.5(1 — €7?1)] and the derivation

(a) is based on Proposition 1. According to Remark 1,
the transformation from |+) to |¥y) can be depicted on
the Bloch sphere as Fig. 3(b). In this example, the phase
shift parameters are set as ¢; < 7/2 and ¢2 < 7/2. It is
straightforward to observe that the probability of collapsing
onto eigenstate |0) enlarges after the quantum preparation

. UiyUjo
phase (i.e., [+) —— ' |¥y)), because the polar angle rotates
from £90° (of |+)) to an acute angle 6y, (of |¥y)). Similarly,
the collapse probability onto eigenstate |0) after one time of
Grover iteration on |+) can be kept unchanged or shrinked
via selecting feasible combination of phase shift parameters
o1 € [0,27] and ¢ € [0, 27].

In practical applications, some experiences may be sam-
pled for training with undesired high frequency, leading to
over-training issue. Besides, the finite size of QIiER buffer
could further deteriorate this disservice [41], which will cause
unfair and biased sampling performance. To circumvent this
issue, the replay time of each stored transition should be
taken into consideration for the quantum preparation phase,
which enables it to enrich sample diversity to improve the
learning performance. In the early stage of training the agent,
the importance of each experience is ambiguous. However,
alongside the learning process, the absolute TD errors of some
transitions remain relatively large, despite many times they
have been sampled for training. Hence, it is necessary to relate
training episode to the quantum preparation phase.

The quantum preparation phase aims to modify the collapse
probability onto eigenstate |0), via one time of Grover iteration
with free parameters ¢; and ¢o. To quantify the amplification
step of quantum preparation phase, we let

[8¢]m [6¢|m
€ Smax — 67 Smax T T 6 ™ T
" = T I Etanh (|5t| ) c [0’ 5) » (33)
e dmax 4+ € Omax max
rtp  te ™ T 37
= —e|==]. 34
02 = o e 2 (2 2 ] 9

With (33) and (34), the quantum amplitude amplification
is related with the corresponding absolute TD error |0,
maximum TD error dp,y, replay times rt;, maximum replay
time 7tm,x, current training episode te and the total training
episode tema, which means that the quantum preparation
phase updates the priority of exp, into its associated k-th
qubit |Uy).

Remark 2: The collapse probability of |¥j) onto eigenstate
|0) versus ¢1 € [0,27] and ¢2 € [0,27] is depicted in
Fig. 4. From this figure, we can find that | (0| ¥y)|?> =
0.5|P — e/®1|? is a symmetric function w.rt. ¢; = ¢s
and ¢; = 27 — ¢9, which is a specific case (i.e., |a]? =
0.5) of Corollary 1. If we concentrate on surface within
¢1 € [0,7/2] and ¢ € [7/2,37/2], it is straightforward to
conclude that (33) and (34) together can control the quantum
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Fig. 4. Collapse probability onto |0) versus ¢1 and ¢2.

amplification step and direction. Specifically, larger ¢; will
lead to greater amplitude amplification step, for arbitrary fixed
¢2. Besides, ¢o controls the amplification direction, where
€ [r/2,7) means that the probability of collapsing onto
|0) will be enlarged, while ¢ € (m,37/2) indicates that the
probability of collapsing onto |0) will be reduced.

Remark 3: In the early stage of training, the radio 7t /rtmax
remains relatively large because rtm.x 1s not sufficiently
updated yet. To avoid unreasonably denying all the sampled
transitions in the early stage of training, we introduce the
factor te/temay to steer parameter ¢ in (34).

3) Quantum Measurement Phase: After the QIiER buffer
is fully occupied by recorded transitions, a mini-batch of
experiences will be sampled to perform network training for
the agent, via standard gradient descent method. To prepare the
mini-batch sampling procedure under constraint of priorities,
quantum measurement on the associated qubits should be
accomplished first. Specifically, the probability of the k-th
qubit collapsing onto eigenstate |0) can be calculated as
| (0| W) |?. Then, the probability of the corresponding expe-
rience being picked up during the mini-batch sampling process
can be defined as bp, = | (0] W) |2/, 1(0] W) 2,
in which the denominator means the sum of collapse prob-
abilities onto eigenstate |0) of qubits that are associated with
all stored experiences.

During the mini-batch sampling period, several times of
picking recorded experiences from the QiER buffer will be
executed, following the generated picking probability vector
b_]; = [bp1,bpa,...,bpc] after quantum measurement phase.
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Algorithm 1 The Proposed DRL-QiER Solution

1 Initialization: Initialize the online D3QN network Q p3 (s, a|@ p3) and its target network

Qp3(s,al@p5g), with® 54 < 6 p3. Initialize the QIER buffer R with capacity C'. Initialize
the vector of replay time as rt = [rt1,rte, ..., rtc] = 0. Set the size of mini-batch as
N, - Set the order index of R as k = 1. Set the flag indicating whether the QIiER buffer is fully
occupied or notas LF = False. Set the maximum TD error as dyax = 1;

for te = [1, temax) do

)

3 Set time step n = 0. Randomly set the the UAV’s initial location as @y, (n) € S. Initialize
a sliding buffer R with capacity Nom s:
4 repeat
5 Select and execute action a, , then observe the next state @y, (n + 1) and the
immediate reward r, = 7[qy (n + 1)]:
6 if LFF == True then
7 Perform quantum measurement on all stored experiences’ qubits and get the vector
of their replaying probabilities [bp1, bpa, . . ., bpc]:
8 for ., = [1, Ny p] do
9 Sample a transition according to [bp1, bpa, . . . , bpc ] and get its location
indexd € {1,2,...,C}h
10 Reset the d-th qubit back to uniform quantum state | ¥ ;) = |+):
11 Update the corresponding replay time rt 3+ = 1 and
rtmax = max(r_‘t);
12 Calculate the sampled transition’s absolute N, 5-step TD error [0 7,,, |
and update the maximum TD error dmax = max(dmax, [ON,, 4 )3
13 Perform quantum preparation phase on the d-th qubit;
14 end
15 Update the online D3QN network Q p3 (s, a|@ p3) via gradient descent method
using the mini-batch of sampled N, transitions from R;
16 end
17 Get and record transition expy, = {qu (n), an, rn, Gu(n + 1)} into R;
18 if n > Ny, s then
19 Generate the Ny, s -step reward 7, _ N, oo from R and record Ny s -step
experience

€rPy_Npsin = 1qu(n — Nms)s @ Npps» Tn—Nmsins Gu(n)}
into R with order index k;

20 Perform quantum initialization phase on the k-th qubitas | ¥ ) = |0). Reset
rt = Oandlet k4 = 1;

21 if & > C then

22 | Set LF = Trueandresetk = 1;

23 end

24 end

25 Letn4 = 1;

% | until@,(n) = Gu(D) || du(n) ¢ S|In = Nmax:

27 Update € «— e X dece. Update the target D3QN Q p3 (s, a|@ 5) every T p3
episodes, i.e., 0 55 < 0 p3:

28 end

Note that the total sampling time is equal to the size of mini-
batch, which will be specified in the numerical result section
later.

Remark 4: Although the QIiER buffer involves quantum
representations and operations, the corresponding processes,
i.e., the quantum initialization phase, the quantum preparation
phase and the quantum measurement phase, can be imitated
on conventional computing devices without implementing real
quantum computations on practical quantum computers.

Remark 5: The associated qubit of sampled experience
should be reset to the uniform quantum state, which means
that the corresponding quantum preparation phase starts from
the uniform quantum state rather than the previous counterpart.
This is in line with the quantum phenomenon where a quantum
system will collapse onto one of its eigenstates after an obser-
vation. Note that the sampled transitions are still remained in
the QIiER buffer until they are discarded.

D. The Proposed DRL-QIER Solution

The proposed DRL-QiER algorithm is summarized in
Algorithm 1, and its flow chart is illustrated in Fig. 5. To solve
the formulated MDP in Section V-A, double DQN (DDQN)
with duelling architecture (D3QN) is adopted to approximate
the Q function Q(q,,, ¥, ). To further speed up and stabilize
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Fig. 5. Flow chart of the proposed DRL-QIiER algorithm.

the learning process, N,,s-step learning and target network
techniques are adopted for updating parameters of the online
D3QN. Specifically, the online D3QN aims to minimize the
following loss function

L(Op3) = [re:e4+N,..+
. k| — 7 U, 2
rmeSQ(qu(tJers), Uu|0D3) _Q(Qu(t)a Uu(t) |0D3)} (35

where Ops3 is the parameter vector of the online D3QN,
0, means the parameter vector of the target D3QN.
The selected action ¢ in (35) is chosen from the

online D3QN rather than the target D3QN, ie., ¢}, =

arg maxQ(Gu(t+N,,,)» Uu|@p3), which completes the DDQN
Uy €A
procedure.

Algorithm 1 starts with network and hyper-parameter ini-
tializations, as shown in step 1. At the beginning of each
training episode, the UAV’s initial location is randomly picked
from the state space S (step 3). Then, the UAV chooses an
action following the popular e-greedy action selection policy,
which means that the UAV either selects a random action from
the action space A with probability e € [0, 1] or chooses the
optimal action that maximizes the state-action approximation
of the online D3QN with probability 1 —e. After the execution
of the selected action, the environment will feed back the
next state and the corresponding immediate reward (step 5).
The experienced transition exp,, will then be recorded by a
sliding buffer, to prepare for the N,,-step learning (step 17).
When the sliding buffer is full, the latest V,,s-step experience
can be generated and then delivered into the QiER buffer
(step 18-step 24). Each training episode terminates when one
of the following cases are encountered: reaching the desti-
nation, hitting the boundary, or exhausting the step threshold
(step 26).'> When one episode is over, the exploration parame-
ter € will be annealed to encourage exploitation from explo-
ration. For every fixed amount of training episodes, the target
D3QN will be updated to the online counterpart (step 27).
Once the QIiER buffer is fully occupied, the mini-batch training
for the online D3QN begins (step 6-step 16). With the mini-
batch samples, the online D3QN is trained to minimize the
mean counterpart of loss function (35), via standard stochastic
gradient descent approach (step 15).

Remark 6: The proposed QiER framework for manipulat-
ing mini-batch sampling is realized via adopting an unsorted
data structure known as binary sum-tree, inspired by the
PER approach [24]. The motivation is that for achieving an

121t is worth noting that although an explicit energy cost model (commonly
for the UAV propulsion power consumption) is not specified in our considered
UAV navigation scenario, the global constraint of energy consumption is
implied because the step threshold Nmax poses a shared budget of propulsion
energy cost for all possible trajectories.
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Fig. 6. Sum-tree architecture.

efficient sampling performance based on the current picking
distribution bp = [bp1,bpa, ..., bpc], the complexity should
not depend on C which could be unbearably large in practice.
An illustration of the used sum-tree architecture can be found
in Fig. 6, where either the root node or the parent node
contains at most two child nodes as their offspring while their
values equal to the sum of their child nodes. Specifically, the
k-th leaf node of the sum-tree is pointed to qubit |¥y) and
the corresponding stored transition in the QiER buffer, and
therefore there are C' leaf nodes in total. When performing
the quantum measurement phase after the priority updating of
quantum initialization phase or quantum preparation phase, the
sum of collapse probabilities onto eigenstate |0) of all involved
qubits, i.e., Z§=1 | (0| W¥.)|?, can be updated via propagating
the measurement of any updated qubit from the corresponding
leaf node to the root node, enabling O[log(C')] updating
and sampling. Besides, the quantum amplitude amplification
in quantum preparation phase is based on Proposition 1
and Corollary 1, where the quantum collapse probability
updating is steered by closed-form expressions and thus
negligible extra computation cost is required. Therefore, the
complexity of our proposed QiER framework is comparable
to that of propositional PER and DCRL strategies. With the
aforementioned efficient implementation, the proposed QiER
framework only costs negligible extra computational power
and memory, compared to conventional ER approach. Note
that SNARM approach adopting ER strategy maintains an
extra neural network for radio mapping, which is undoubtedly
more computation-expensive than DRL-ER, DRL-PER, DCRL
and our proposed DRL-QIER solution. Moreover, our QiER
framework does not destruct the convergence of any DRL
agent that it is plugged onto, but may result in different con-
vergence curve against DRL agent aided with other experience
replay techniques, because it sorely focuses on polishing the
picking process of stored transitions, as depicted in Fig. 5.

VI. NUMERICAL RESULTS
In this section, simulation results for the proposed

DRL-QIER solution and the corresponding performance com-
parison against several baselines are performed.

A. Simulation Environment Setups

For conducting the simulation, the UAV’s exploration
airspace is set as A : [0,1] x [0,1] x [0,0.1] km. Fig. 7(a)
delivers the top view of A, in which the locations of involved
BSs and the direction of each ULA’s boresight are specified.
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Fig. 7. Simulation environment and the corresponding preview on TOP
distribution.

To generate building distribution within A, one realization of
statistical model suggested by the International Telecommuni-
cation Union (ITU) [42] is invoked, which is subject to the
following three parameters: 1) & indicates the ratio of region
covered by buildings to the whole land; 2) [; represents average
amount of buildings; and 3) 4 determines building heights’
distribution (say, Rayleigh distribution with mean 4 > 0).
Besides, the small-scale fading component of G2A link is
assumed to follow block Nakagami-m channel model. The
common destination’s location is fixed at ¢, = (0.8,0.8,0.1)
km, without loss of generality.

Unless otherwise mentioned, the parameter setups regard-
ing simulation environment are in line with Table I. With
the generated local building distribution, antenna model and
small-scale fading model, the corresponding TOP distribution
over arbitrary UAV location within A can be previewed as
Fig. 7(b).

B. Structure of DNNs and Hyper-Parameter Settings for
Learning Process

The proposed DRL-QIiER algorithm is implemented on
Python 3.8 with TensorFlow 2.3.1 and Keras. Specifically,
the DNNs of online D3QN agent are constructed with
fully-connected feedforward ANNs. The shapes of the online
D3QN’s input and output layers are subject to the UAV’s hor-
izontal locations and the amount of possible flying directions,
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TABLE I
PARAMETER SETTINGS FOR SIMULATION ENVIRONMENT

Parameters | Values || Parameters | Values
Amount of BSs B 4 Amount of sectors 3B 12
Horizontal side-length of A D 1 km Amount of each ULA’s array elements M 8
Half-power beamwidth O34p/P34p 65°/65° Speed of light ¢ 3 x 108 m/s
Carrier frequency fc 2 GHz Wave length A 15 cm
ULA’s element spacing distance d,, 7.5 cm ULA’s electrically titled angle O¢¢;;¢ 100°
Antenna height of BS 25 m Flying altitude of UAV 100 m
ITU building distribution parameter & 0.3 ITU building distribution parameter B 118
ITU building distribution parameter 4 25 Total amount of buildings BDQ 118
Expected size of each building &/ /3’ 0.0025 km? Maximum height of buildings 70 m
Transmit power of each sector P; 20 dBm Nakagami shape factor m for LoS/NLoS 3/1
Transmission outage threshold I';j, 0 dB Average power of AWGN o2 -90 dBm
Duration of time slot A 05s Velocity of the UAV V,, 30 m/s
Amount of signal Measurements L 1000 Weight balancing the minimization 7 50
TABLE II

HYPER-PARAMETER SETTINGS FOR LEARNING PROCESS
Parameters | Values || Parameters | Values
Capacity of QiER buffer C' 20000 Size of mini-batch N, 128
Initial e-greedy factor e 0.5 Annealing speed dece 0.994/episode
Target D3QN update frequency Y ps3 5 Length of sliding buffer Ny, s 30
Positive special reward rp 400 Negative special reward 7, -10000
Learning rate oy, Adam’s default Discount factor 1
Maximum training episodes temax 2000 Step threshold Nmax 400

respectively. Between the input and output layers, there are
4 hidden layers, where the first 3 hidden layers contain 512,
256, 128 neurons, respectively. The last hidden layer plays
the role as duelling layer consisting of Ny + 1 neurons,
where one neuron indicates the estimation of state-value and
the other N4 neurons reflect action advantages. Then, the
outputs of the duelling layer will be aggregated to generate
the estimation of the N4 actions at the output layer. Besides,
the optimizer minimizing the mean square error (MSE) for
the DRL-QiER agent is Adam with fixed learning rate. The
activation functions for each hidden layer and the output layer
are Relu and Linear, respectively. Note that the target D3QN
shares the same structure as its online counterpart.

The settings of hyper-parameter for learning process are
stated in Table II.

C. Training of the DRL-QIER Algorithm

Fig. 8(a) and Fig. 8(b) depict the return history and
designed trajectories of the proposed DRL-QiER solution,
respectively. Note that the moving average return for each
training episode is calculated via a moving window with length
of 200 episodes, while the corresponding designed trajectories
are picked with spatially-separated initial locations in the late
training stage (in the range of episodes 1900-2000), for the
sake of neat and sufficient demonstration. From Fig. 8(a), it is
straightforward to conclude that the moving average returns
steadily converge to the maximum alongside the training
process, although some fluctuations are experienced, which is
a typical phenomenon in DRL field. Besides, from Fig. 8(b),
it is observed that the proposed DRL-QiER solution can
direct the UAV from various initial locations to the common
destination, with designed trajectories adaptive to the TOP dis-
tribution. Regions with higher TOP are avoided while keeping

the UAV being directed to reach the common destination
with possibly fewer moving steps (equivalently, as short flying
time cost as possible). For instance, even the near-to-zero
but extremely narrow TOP slots around (0.4,0.76,0.1) km
and (0.6,0.79,0.1) km can be recognized. On the contrary,
higher TOP regions in the range of (0.4 — 0.6,0 — 0.5,0.1)
km are bypassed as much as possible. Another good example
is the trajectory starting from location around (0.95,0.09,0.1)
km, where the “V” shape around (0.95,0.2,0.1) km perfectly
demonstrates the effectiveness of the proposed DRL-QiER
solution, in which the higher TOP fields are avoided. Note that
larger weight factor 7 will generally lead the designed path to
experience lower TOP regions, but inevitably enlarging the
time cost (say, longer and more tortuous trajectory) reaching
the common destination. This is the reason why weight
factor 7 is invoked to balance the proposed minimization
problem (P1).

D. Performance Comparison

Four DRL-aided baselines are considered for performance
comparison, listed as follows.

e DRL-ER: The D3QN is trained via mini-batch sampling
from standard ER buffer with uniform sample-picking
strategy.

e DRL-PER: The D3QN is trained via stochastic mini-batch
sampling from the PER buffer with proportional prior-
itization method, in line with [24]. In this approach,
the priority of each recorded transition = is measured
by its corresponding absolute TD error |0(z)|. Then,
the probability of picking a transition from the PER
buffer follows p(z) = (|d(x)| + £)*=/ > (|6(z")] +
&)r - where a small positive constant £ is used to
avoid zero-priority case and apgr determines how much
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prioritization is applied, with apgr = 0 corresponding to
the special case that is equivalent to DRL-ER baseline.
To correct the bias caused by priority-based sampling,
normalized importance-sampling (IS) weight W(x) =
(C x p(x))~Pm= / max,, W (a') is calculated to scale the
updating of DNNs, where C' is the capacity of the PER
buffer and fFpgr reflects the amount of IS correction. The
parameter Jpggr should be incremented from a relatively
small positive constant to 1 over the training process
because a full-step update is more important when the
algorithm begins to converge.

e DCRL: The DCRL training paradigm aims to offer
better mini-batch sampling efficiency, according to the
complexities of recorded experiences. Specifically, the
complexity of each transition is determined by self-paced
priority and coverage penalty, where self-paced priority
maps TD error into the difficulty of current curriculum
and coverage penalty uses replay times of transitions to
enhance sampling diversity. For detailed implementation
of DCRL, please refer to [25].

o SNARM: The framework SNARM invokes an extra DNN
termed as radio map to help improve the overall learning
efficiency. The signal measurements alongside the UAV’s
trajectory are utilized to train not only the online D3QN
but also the radio map. The radio map enables it to
generate simulated trajectories and thus reduces actual
trials. Based on standard Dyna architecture, one D3QN
update with the actual experiences follows several extra
updates with the simulated transitions. Therefore, the
SNARM approach is promised to help achieve better
learning performance while reducing the cost of data
acquisition from actual experiences. For more details of
SNARM, please refer to [5].

For fair comparison, the structures of online and target
D3QNs for all baselines are the same as those of the pro-
posed DRL-QIER solution, while the hyper-parameter settings
of these baselines are in line with Table II. Besides, the
construction of radio map’s DNN and the corresponding
hyper-parameter settings of baseline SNARM are in accor-
dance to [5], while the complexity index function, the curricu-
lum evaluation function, the self-paced prioritized function,
the coverage penalty function and the corresponding DCRL
hyper-parameter settings are in line with [25]. Furthermore,
the additional hyper-parameters regarding PER in DRL-PER
baseline are set as apgr = 1, & = 0.01 and Fpgr = 0.4.
All the baselines are altered to involve multi-step learning
and start training after their replay buffers are fully exploited.
Moreover, all the baselines share the same randomly-generated
initial UAV locations with the proposed DRL-QiER solution,
for each training episode.

Fig. 9(a) delivers the performance comparison on moving
average returns of the proposed DRL-QIiER solution and
considered baselines, versus training episodes. From this sub-
figure, it is easy to find that SNARM approach can offer
satisfactory learning performance, thanks to the simulated
trajectories enabled by the extra DNN (i.e., the radio map).
Especially, in the range of training episode from 400 to 1000,
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despite that the radio map is getting well trained as the training
process going. Besides, DRL-PER, DRL-QiER and DCRL
approaches can achieve better moving average returns than
DRL-ER method, in the early training stage (e.g., episodes
500-750). The reason is that DRL-ER solution samples tran-
sitions uniformly without considering their priorities, which
leads transitions with higher importance to have less oppor-
tunities for training the online D3QN. However, DRL-PER
method experiences server fluctuations than DRL-QIiER and
DCRL (e.g., episodes 1250-2000), which is because DRL-PER
does not take transitions’ replay time into account and thus
some transitions are sampled with undesired high frequency
while their absolute TD errors remain relatively large. The
proposed DRL-QIER solution showcases more steady learn-
ing ability, with less amplification of fluctuation and overall
raising trend, thanks to the QiER technique which balances
sampling priority and diversity in a better manner. Although
SNARM and DCRL approaches can offer satisfactory learning
performances, their respective shortcomings are: 1) SNARM
framework needs to train an extra model-learning DNN, which
thus introduces extra biases and heavy training burden, and
2) it is difficult to set up feasible complexity index function,
curriculum evaluation function, self-paced prioritized function,
coverage penalty function and the corresponding DCRL hyper-
parameters, which limits the robustness of DCRL solution. The
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Fig. 9. Performance comparison on moving average returns and designed
trajectories.

proposed DRL-QIiER method requires less hyper-parameters
tuning and contains no extra DNN, and therefore is easier
and more robust for implementation. To deliver more insights,
Fig. 9(b) depicts the comparison on designed trajectories of
the implemented algorithms, over three representative starting
locations chosen from episodes 1910-2000. It is straightfor-
ward to observe that the proposed DRL-QiER and the consid-
ered baselines direct the UAV to hit the common destination
with different trajectories.

Fig. 10(a) demonstrates comparison on average time cost
of designed trajectories and the corresponding EOD for
the considered algorithms, over four episode slots 1-1400,
1401-1600, 1601-1800 and 1801-2000. From this figure, one
can find that the proposed DRL-QiER solution can help
achieve both lower average EOD and average time cost, within
each episode slot. Especially, in the late training state (e.g.,
episode slot 1800-2000), the proposed DRL-QIiER method
outperforms other baselines, in terms of both average EOD
and average time cost. Furthermore, Fig. 10(b) illustrates
comparison on average duration and average weighted sum
of EOD and time cost over the last 200 training episodes, for
all the DRL-aided approaches and non-learning-based strategy
termed as straight line. From this figure, it is easy to find that
while the straight line solution offers the cheapest average
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and DRL-QiER solutions.

time cost, it leads the UAV to suffer the highest average
EOD, which is extremely non-preferable and thus unveils the
benefits provided by DRL-aided approaches. On the contrary,
the proposed DRL-QiIER solution can not only help the UAV
experience the lowest average EOD, compared to both other
DRL-aided approaches and the straight line strategy, but also
direct the UAV to reach the common destination with the
cheapest average time cost, against other DRL-aided solutions.
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TABLE III

COMPARISON ON AVERAGE DURATIONS OF CIRCULAR,
BS-APPROACHING AND DRL-QIiER SOLUTIONS

Circular ~ BS-Approaching ~ DRL-QIiER
Time Cost 28.440 s 31.916 s 31.234 s
EOD 10.469 s 12.128 s 8.136 s
Weighted Sum of
Time Cost and EOD  551.890 638.316 438.034

To further highlight superiority of the proposed DRL-QIiER
solution against conventional path planning approach, per-
formance comparisons between DRL-QIiER and two other
non-learning baselines are demonstrated in Fig. 11 and
Table III, for three different initial locations. Specifically, the
BS-approaching baseline aims to direct UAV to travel across
the nearest BS alongside the flight because intuitively locations
nearby BS can provide stronger coverage quality. The other
non-learning baseline is based on the assumption of BS’s
circular coverage, within which arbitrary location is simply
treated as that can provide satisfactory coverage strength.
The circles in Fig. 11 are taken as examples to evaluate the
designed trajectories under the circular coverage assumption.
Note that unlike the aforementioned DRL-related approaches,
both of these two considered baselines are not dependent on
the actual TOP distribution, and thus naive and inferior trajec-
tories could be generated. To validate this, Table III delivers
comparison on average durations of circular, BS-approaching
and DRL-QIER solutions, over trajectories started from the
considered three initial locations. From this table, it is straight-
forward to observe that the proposed DRL-QiER solution
can direct UAV to achieve the minimum amount of average
weighted sum of time cost and EOD where the corresponding
average EOD is the cheapest, while the other two non-learning
baselines suffer from greater average EOD. The corresponding
reason can be interpreted as that the proposed DRL-QiER
solution (more generally, DRL-aided approaches) is trained via
interacting with the actual TOP distribution, which validates
the advantages provided by DRL-related solutions against non-
learning alternatives.

VII. CONCLUSION

In this work, an intelligent navigation task for
cellular-connected UAV  networks was investigated,
aiming at minimizing the weighted sum of time cost and
expected outage duration alongside UAVs’ flying trajectories
towards the common destination with randomly-generated
initial UAV locations. To overcome the inefficiency of
offline optimization techniques in navigating the UAYV,
a DRL-aided algorithm, i.e., DRL-QiER solution, was
proposed, in which the innovative QIiER framework is coined
to help the D3QN agent hit a better learning efficiency.
Simulation results validated the effectiveness of the proposed
DRL-QiIER solution, while performance comparison against
both several DRL-aided baselines and straight line strategy
showcased DRL-QIiER method’s superiority. Moreover, the
proposed QIiER framework can be potentially extended into
other existing DRL frameworks that are dependent on ER
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technique, e.g., deep deterministic policy gradient (DDPG),
soft actor-critic (SAC) and Rainbow.
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