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Abstract—In the presence of Warden’s detection, a maximiza-
tion problem on transmission throughput from unmanned aerial
vehicle (UAV) to legitimate nodes is considered and solved via
UAV trajectory design, subject to covert, velocity and mobility
constraints. With the building-distribution-based pathloss model
and the Warden’s uncertain location model, the formulated
optimization problem is challenging to be tackled through stan-
dard offline optimization methods. Alternatively, a twin delayed
deep deterministic policy gradient (TD3) approach enhanced
by multi-step learning and prioritized experience replay (PER)
techniques, termed as multi-step TD3-PER, is proposed to help
the UAV adaptively select velocity from continuous action space.
Numerical results demonstrate the effectiveness of the proposed
multi-step TD3-PER solution and showcase the corresponding
superiorities against provided baselines.

Index Terms—Drone, trajectory design, covert communication,
deep reinforcement learning.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been widely used
in current markets, such as surveillance, emergency rescue
and material transport. With controllable mobility, low cost
and on-demand deployment, UAVs have also been increasingly
applied in the field of wireless communications, e.g., mobile
relaying, data collection and wireless coverage. Compared to
terrestrial communication networks that are based on fixed-
location high-altitude platforms, UAV-aided wireless commu-
nication systems are able to establish short-distance transmis-
sion links within line of sight (LoS), resulting in better air-to-
ground (A2G) channel qualities among transceivers [1].

Due to the broadcasting nature of radio frequency (RF)
medium, the confidential information transmitted within UAV-
aided wireless communications is vulnerable to be intercepted
by malicious eavesdroppers, not to mention that the LoS-
dominated A2G wireless links may further deteriorate this
transmission security issue. However, the majority of related
literature concentrates on preventing the UAVs’ transmitted
signals from being wiretapped by eavesdroppers, while hid-
ing wireless transmissions initiated from UAVs, i.e., covert
communication for UAV-aided networks, has been overlooked.
Covert communications aim to help the transmitters achieve
low probability of being detected by potential Wardens, which
can undoubtedly enhance transmission security in the first
place. According to the Square Root Law [2], O (y/n) bits of
information can be transmitted reliably and covertly in n —
400 symbols over additive white Gaussian noise (AWGN)
channels. In the case of uncertain Warden’s noise power, it

was proved that the transmitter is able to covertly send O (y/n)
bits to the intended receiver [3]. The possibility and achievable
performance of low probability of detection in one-way relay
system were examined in [4], in which rate-control and power-
control transmission strategies are considered, respectively. In
wireless relay networks, the impacts of channel uncertainty on
covert communication performance was investigated in [S]. A
joint design of transmit power and trajectory was proposed
and solved via convex optimization technique in [6], aiming at
maximizing UAV’s transmission rate under covert constraint.

Although covert transmissions have been intensively studied
in the field of terrestrial communications, covert transmissions
in UAV-aided networks have not drawn much attention so far,
especially on the topic of how to help the UAV achieve low
probability of being detected via deep reinforcement learn-
ing (DRL)-aided trajectory design. Motivated by the above
observations, this paper investigates transmission throughput
maximization problem for UAV-mounted network via path
planning, subject to covert, velocity and mobility constraints.
The main contributions are concluded as follows.

o With the building-distribution-based A2G pathloss model
and assuming that the Warden has no exact knowledge of
its received noise power, the optimal detection threshold
adopted by the Warden is derived. Considering that the
UAV cannot gain perfect Warden’s location information
in practice, the estimated Warden’s overall detection error
rate on the perspective of the UAV is formulated, which
then plays the role as the covert constraint.

o The considered maximization problem is difficult to be
solved via standard optimization methods, which is alter-
natively mapped into a Markov decision process (MDP)
and tackled via DRL-aided approach. Specifically, a twin
delayed deep deterministic policy gradient (TD3) agent
is invoked to help the UAV find proper velocity from
continuous action space, alongside the UAV’s flight from
the initial location to the destination. Furthermore, multi-
step learning and prioritized experience replay (PER)
techniques are integrated to help the TD3 agent hit a
neater training performance.

o To highlight the advantages offered by the proposed
multi-step TD3-PER solution, performance comparisons
against DRL-based and non-learning baselines, i.e., dou-
ble duelling deep Q network (D3QN) and straight-line
solutions, are provided in numerical results.
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II. SYSTEM MODEL

Covertness-aware transmissions within UAV-aided network
are considered, where a UAV u tries to deliver messages to
legitimate nodes [ € L with low probability of being detected
by a Warden w. Note that both the legitimate nodes and
the Warden are located on the earth, while all the involved
transceivers are equipped with single antenna. The UAV is
supposed to reach a predefined destination from its initial
location, with static flying altitude A. For clarity, a rectangle
subregion A : [Zio, Tup| X [Y10; Yup) is specified as the UAV’s
horizontal exploration environment, where the subscripts "lo"
and "up" indicate the lower and upper boundaries, respectively.
Furthermore, the UAV’s horizontal location at time instant
t € [0,7] remains in the range of Gi, < ¢.(t) =< Gip, Where
Jio = (%105 Y10)> Qup = (Tup, Yup)> T represents the overall flight
duration and =< denotes the element-wise inequality. Then,
the trajectory of UAV’s flight can be fully traced by ¢, (t) =
(2 (), yu(t)), starting from the initial location g, (0) € R1*2
and ending at §,(T") € R'*2. Unfortunately, continuous time
t makes it unaffordable to design the UAV’s flight trajectory
because infinite location possibilities and velocity constraints
are inevitably involved. To circumvent this issue, we uniformly
divide the flight duration 7' into N time slots. The time
slot length is delicately defined as a relatively small value
A, = T/N, and thus the velocity and the distances from
the UAV to the ground nodes can be treated as unchanged
within each time slot. Moreover, the horizontal coordinates of
legitimate nodes and Warden are indicated as ¢; = (z;,y;) and
Gw = (Tw, Yw), respectively.

A. Pathloss Model

In accordance with 3GPP urban-micro (UMi) pathloss
model [7], the A2G pathloss in dB from i € {l,w} to the
UAV within n-th time slot is given by

max{X’,30.9 + [22.25 — 0.51g(A)]

o lg(diw) + 201g(f2)}, LoS
Rilgu(ml= max{RLS (7, (n)], 32.4+ ’
[43.2 — 7.61g(A)] 1g(ds) + 201g(f.)} NLoS

(D
where N = 201g(d;,,) + 201g(f.) + 32.45 represents the free
space pathloss, f. in GHz indicates the carrier frequency and
div = \/||G.(n) — G]|? + A2 outputs the Euclidean distance
between the UAV and ¢. From (1), it is straightforward to
conclude that the availability of ¢; is of essence for the
UAV to estimate the corresponding A2G pathlosses. However,
it is difficult (or, even impossible) for the UAV to gain
perfect location estimations of malicious equipments on the
ground. Therefore, this paper adopts a practical assumption
on location availability, i.e., the UAV can only obtain the
Warden’s location information with uncertainty, while the
exact locations of the legitimate nodes are known by the UAV
a prior. Specifically, uncertain location estimation model is

invoked to characterize the noised location information (e.g.,
Gaussian estimation noises) of the Warden, expressed as

Jw:§w+a (2)

where @y = (fu,9w) and & = (Zy, i) ~ N(0,021) rep-
resent the estimated Warden’s location and the corresponding
estimation error, respectively.

To practically trace the type of experienced A2G pathlosses,
building distribution within A should be taken into consider-
ation. Then, the type of large-scale pathloss of A2G channels
for UAV at arbitrary location ¢,(n), i.e., LoS or NLoS in
(1), can be accurately determined via checking the potential
blockages between the UAV and ground receiver <.

B. Transmission Rate from the UAV to the Legitimate Node
For the wo-th channel use over the n-th time slot, the
received signals at the legitimate node can be given by

qu(n)]

P10~ Ty (@) + 2(@), 3)

where z,(w) ~ CN(0,1) is the transmitted signal from the
UAV to the legitimate node, P, means the UAV’s transmit
power and 5 (w) ~ CN(0,07) denotes the AWGN. Note that
w = {1,2,...,c} indicates the symbol index within a time
slot and ¢ measures the slot length. Then, the transmission rate
in bps/Hz from the UAV to the legitimate node over the n-th
time slot can be derived as

R (n) = logy (1 +T(n)), )

Q'U (n)]

yl(wa TL) =

where T(n) = P, 10~ /o? represents the correspond-
ing signal-to-noise-ratio (SNR).

C. The UAV’s Estimated Detection Performance for Covert
Transmissions

To detect potential transmissions initiated from the UAYV, the
Warden has to perform a binary hypothesis testing, where H
represents the null hypothesis implicating that the UAV does
not transmit and #, denotes the alternative hypothesis indicat-
ing that the UAV transmits. Then, the false alarm probability
(type I error) and the miss detection probability (type II error)
are defined as Py, = Pr(D;1|Ho) and P,,q = Pr(Do|Ha1),
respectively. Hereby, Dy indicates that the detection performed
by the Warden is in favor of Hg, while D; means that it
is in favor of #H;. The Warden is assumed to posses no a
prior knowledge of both hypotheses, and thus the overall
detection error rate is defined as Pg. = Pfq + Pppq. In covert
communications, covert transmission is treated as achieved if
any communication scheme stands with Py, > 1 — ¢, where
¢ < 1 is a positive value representing the covert requirement.

For the wo-th channel use over the n-th time slot, the
received signals at the Warden can be derived as

— Ry [‘Iu (n)]

P,10 Ty (@) + 22 (w), H1

%w(w)a Ho

Y (w,n) = { 6))
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~ CN(0,02) is the AWGN. Then, we have
+ Ui) X22c7 Hl

i

Ho

(6)
where X3, represents chi-squared random variable with 2c
degrees of freedom. According to Neyman-Pearson criterion
[8], likelihood ratio test (LRT) is the optimal method for the
Warden to minimize its detection error probability. Further-
more, invoking stochastic ordering theory [9] and Neyman-
Fisher factorization corollary [10], the LRT applied by the
Warden is equivalent to a test on its average received power
within each time slot [11]. Therefore, the binary hypothesis
testing performed by the Warden can be given by

1E
= Z |yw(wvn)|2
¢ w=1

where 7(n) represents the detection threshold. This paper
adopts infinite slot-length assumption, which means that each
time slot accommodates ¢ — oo channel uses (symbols).
According to Lebesgue’s Dominated Convergence Theorem,
Chi& X2./c =1 holds. Then, we have

P,10~ Hi
H, .
(n) = {03}, e

where ¢, (@)

S gl n)? = {(P ull

—Nay qu(ﬂ)]

2
o—wXQm

D,
2 7(n), @)

0

R Qu(n)]
+ afu,

®)

In practice, it is impractical for transceivers to gain perfect
information regarding their received AWGN. Therefore, uncer-
tain AWGN model is adopted to characterize the dynamics of
Warden’s AWGN power. Specifically, the Warden only knows
the distribution of its received AWGN’s variance, given by

, x€[10715,10707]
NG

1
21n<10ﬁ)x

0, otherwise

fafu (l‘) =

where ¢ in dB measures the degree of noise uncertainty and ¢
indicates nominal noise power. Based on (7), (8) and (9), false
alarm and miss detection probabilities can be derived as

Psa(n) = Pr (o3, > 7(n)) =
0 7(n) > 1070¢
b , T(n) <107H0 (1)
1 1010 § .
21n(10ﬁ) ln< (1) )7 otherwise
Prna(n) = Pr (P“(n)m%‘;u(n)] +02 < T(n))
17 T( ) > 1010L—|— RLIOM
0, T(n) <10~ 10L+P IOM
REG =) ot o . (D
(n)—P,10 >1010L >
otherwise

2111(10%)

respectively. In contrast to the uncertain Warden’s location
model on the perspective of the UAV as expressed in (2), this
paper considers the worst case of covert communications, i.e.,

the Warden is able to obtain the perfect location information
of the UAV. As such, ¢,(n) and §, in (11) are treated as
accurately-known parameters for the Warden. Invoking (10)
and (11), it is straightforward to calculate the Warden’s overall
detection error rate as Pg.(n) = Pq(n) 4+ Pra(n). Then, the
Warden tries to derive the optimal detection threshold 7*(n)
to perform covert detections, aiming at minimizing Pg.(n).
Proposition 1: The optimal detection threshold 7*(n)
adopted by the Warden within the n-th time slot is given by

N 10154, P,10
T (n) = P,10 R (g (m)]

Nw[qu(ﬂ)] v

> 10107 —
+ 10104,

10" 10¢
' 10 ( | 2)
otherwise

Then, the corresponding minimum overall detection error rate
can be calculated as

P}, ()=
0, ]DuloM > 1010 10— TLOZ
- ln( —= 1917? ) otherwise 13)
21n(1010> Pu10%+1ofﬁL
M

Proof: If P,10 < 10197 — 10~ 19 holds, the
Warden’s overall detection error rate can be expressed as

]Pde (n):

1n<1010L> ( )]
T — Ry [Tu(n ~
D/ r(n) € [10 f5i, P10~ 56 10-@)
21n(10 10
Ry [qu(n)] o

In <1oé_w>

Tin — R [Tu ()]

- 7(n) e [P 10—

21n(10 m)

+107107,1010 ]
R [T ()] s
1n<(7’(n)7Pu10 10 ) 10E10

21n 101*0)
— R [Tu (n)] N
P, 10— 10104
1,  7(n)<10-15; or 7(n)>P, 10~ 55 11075;

(14)

Based on (14), the Warden will never allow 7(n) < 1071
or 7(n) > P10 18 4+ 10757 because Pyo(n) = 1
stands, which means that the Warden gets the worst detection
performance. Furthermore, it is easy to verify that Pg.(n) is
a monotonically-decreasing function with respect to (wrt)
7(n) in the interval {10 i, P, 1058 410~

while Pg.(n) is a monotonically-i 1ncreas1ng function w.r.t.
[

—Ry [qu (n)]

. . ~ JRANDN
7(n) in intervals 77,1077| and

(1010L P,10 +10ﬁi}. Then, we can conclude
that the optimal detection threshold should be 7*(n) =
— RNy [Tu(n LA . . .

P,10 {fu ) 4107~ 10 ¢, given the fact that (14) is continuous

w.r.t. 7(n). Via invoking 7*(n) into (14), the correspond-
ing minimum overall detection error rate can be derived as

—Ry qu(")
mln(lOloL/(P 10 +10- 101,))
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— Ry [qu (n)]

Similarly, in the case of P,10 > 1010; — 10~ 10 4,
we have
ln 10ﬁﬂ
(7”) 7(n) € [10~157,10757)
21n (1070
Ll (n) € [mmp 10M+10—r‘02]
de n)= qu (1 L
L r(n)<10=Hi or 7(n)>P, 10215 11075
((T(n) P10 [qum)])%)
o1 (10Tb) , otherwise
(15)

Based on (195), it is straightforward to get that the optimal
detection threshold should be 7*(n) = 1076/ and the corre-
sponding minimum overall detection error rate is 0. [ |

Proposition 1 enables the Warden minimize its overall
detection error rate within arbitrary time slot, via providing the
optimal detection threshold. Then, the UAV needs to estimate
the Warden’s overall detection error rate within each time slot,
based on which it can make adaptive decisions to counter
detections from the Warden, e.g., trajectory design. With the
considered uncertain location estimation model (2), the UAV
can estimate the expected version of overall detection error
rate suffered by the Warden.

Proposition 2: On the perspective of UAV, the expected
overall detection error rate under uncertain Warden’s location
estimation model within the n-th time slot can be derived as

By (n) = 0, P10~ > 10107 — 107107
e Pge(n), otherwise

w[qu(n)]

(16)

Proof: From Proposition I, we know that the Warden

can always achieve accurate detection performance without

suffering from detection errors, i.e., P} (n) = 0, via letting

7*(n) = 10757 in the case of P, 1OM > 10767 —

10~ 16 ;. Therefore, in this case, the expected overall detection

error rate should be Py (n) = 0.

In the case of P, 10M < 1016% — 10”197, the

expected overall detection error rate can be given by

N 10to; )}
{Q'w:qw"rg} { (P“ 10M+107TL0[ (17)
21n(107) '

However, it is mathematically intractable to derive the closed-
form expression for (17) because the pathloss factor Ry, [, (n)]
is located in the denominator of logarithmic function and
the uncertain location estimation model is involved in the
complex A2G pathloss model (1). Alternatively, numerical
evaluation on location uncertainty is applied to approximate
(17), expressed as

Pde(n) =

10107
Ny [7u ()8
10

] _LA>
O 2 (18)

Zg_lln<
P, 10
2¢1n(1070)

Pde (n) ~ ]IADde (n)z

where R, [¢,(n), ¢] indicates one realization of location error
£ and ¢ measures the amount of numerical evaluations. Note

that ¢ > 1 should be delicately chosen to hit a good trade-off
between accuracy and complexity of numerical evaluations. B

D. Problem Formulation

This paper aims to maximize transmission throughput from
the UAV to legitimate nodes alongside the UAV’s trajectory
from the initial UAV location to the destination, via designing
UAV’s marching direction within each time slot, subject to
covert, velocity and mobility constraints. Then, the corre-
sponding optimization problem can be formulated as

:max Z Z Ri(n (19a)

tu(m) 2 eL
s.tPg(n) >1—g, (19b)
gn+1) = qn) + A, (n), [[T.(n)] =V, (19¢)

The constraint (19b) makes sure that a certain level of covert
transmission can be achieved, while the constraints (19c)
and (19d) indicate the velocity and mobility regulations. For
simplicity, the factor A; in (19a) is omitted. Intuitively, the
UAV needs to adopt proper flying direction within arbitrary
time slot during its flight, for not only avoiding "covert
holes" where the covert requirement cannot be satisfied but
also directing itself to visit possible locations where greater
transmission rate is achievable. Hence, it is non-trivial for the
UAV to carefully design its velocity for arbitrary time slot.

Because of the building-distribution-based pathloss and
uncertain location estimation models, it is challenging to
tackle (P1) via standard optimization techniques (e.g., convex
optimization), if not impossible. Alternatively, this paper aims
to design a DRL-aided approach to efficiently solve the
formulated optimization goal.

III. THE PROPOSED MULTI-STEP TD3-PER SOLUTION

To design the DRL-aided solution, the first step is to map
the considered problem into a MDP, stated as follows.

o S: The state space is continuous, which contains possible
UAV locations within A, subject to gio = ¢ = Gup-

o A: The action space is continuous, which involves pos-
sible velocity options @, € R*2, subject to |7, || =V

7T State transition is deterministic, governed by (19c).

e 7: According to the optimization objective (19a), it is
direct to design the reward as r(q.) = > ;o Ri(qu) — 1,
where the penality —1 is used to encourage the UAV to
reach the destination with fewer steps.

A. Twin Delayed Deep Deterministic Policy Gradient

The optimization problem (P1) involves velocity manage-
ment from continuous domain, which leads to infinite action
space. Unfortunately, deep Q network (DQN)-based algo-
rithms, e.g., D3QN, are not suitable to tackle problems con-
taining continuous actions, because it is extremely inefficient
to find the maximum Q value over continuous action space
[12]. To deal with this obstacle, policy gradient approach and
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actor-critic architecture are invoked. In actor-critic algorithms,
the actor is a policy network which takes states as inputs
and reproduces a specific action, instead of a probability
distribution over possible action options. Besides, the critic
is a state-action value network, in which action and state are
treated as the inputs and state-action values are the corre-
sponding outputs. The actor network in deep deterministic
policy gradient (DDPG) can eliminate the need of locating
the action maximizing the state-action function given the next
state, which can robustly solve problems with continuous
action space. However, DDPG may suffer from one common
and fundamental obstacle, i.e., overestimation bias induced
by unavoidable function approximation errors, which is then
propagated through the Bellman equation and can result in
broken policy. To relieve the aforementioned side-effect, TD3
algorithm introduces three techniques to further improve the
performance of DDPG, shown as follows.

1) Target Policy Smoothing: To compute the target of critic
network’s loss function, unlike DDPG approach, TD3 adds
additional noise to the action chosen by the target actor
network for the next state, shown as

p(5e4110,) < p (s14110,) +07, (20)

where 6, denotes the parameter vector of the target actor
network and 9~ ~ N(0, UIQL,) indicates the added additional
noise. Note that target policy smoothing technique serves as
a regularizer for TD3 algorithm, which is designed to smooth
the estimated Q values over similar actions and thus can help
address the overfit issue caused by some actions with sharp-
peak estimations of Q value.

2) Clipped Double Q Learning: In contrast to DDPG
approach where one single critic network is applied to estimate
the Q function, TD3 maintains two critic networks (i.e., the
twin) and utilize the critic network with smaller estimated Q
value to form the target of loss function. Specifically, both
critic networks of TD3 algorithm are updated via stochastic
gradient decent approach to minimize their loss functions with
the same target, given by

L(Oc;)=|r + anzlilan(StHaﬂ (s+110,,) +9716c,)

—Q(s1,a00¢,)]°, @1)

where j € {1,2} is introduced to distinguish the twin critics,
0c; and Haj mean the parameter vectors of critic networks
and target critic networks, respectively. Note that the clipped
double Q learning technique can help relieve the overestima-
tion issue via adopting the smaller estimated Q value of the
twin critic networks to realize critic network updates.

3) Delayed Policy Updates: Similar to DDPG, the actor
network of TD3 algorithm is updated to maximize the ex-
pected return via gradient ascent approach, where the expected
return’s gradient is calculated via the chain rule, shown as

VGMJ (9) = Est{an (Stv a|001) VG,LPJ (5t|0u)}7 (22)

in which 6, indicates the parameter vector of actor network.
However, in TD3, the actor network, target actor network and
the twin target critic networks are updated less frequently than
the twin critic networks, which can help damp the volatility
issue in policy gradient algorithms.

B. The Proposed Multi-Step TD3-PER Solution

To efficiently tackle the considered trajectory design prob-
lem with continuous action space, this paper proposes a multi-
step TD3-PER approach, via leveraging multi-step learning
and PER techniques to further improve the training perfor-
mance of TD3-based algorithm. Different from TD3 where
randomly sampled one-step transitions are used to train the
actor and critic networks, the proposed multi-step TD3-PER
solution takes prioritized multi-step transitions to help the
agent achieve a better training performance, of which the
pseudo-code is summarized in Algorithm 1 and the high-level
workflow is depicted in Fig. 1. Note that the non-uniform
priority is calculated w.r.t. transition’s temporal difference
error and then applied to weight the twin critics’ updates in
an importance sampling (IS) manner.

Algorithm 1: The Proposed Multi-Step TD3-PER Solution

1 Initialization: Initialize the twin critic networks Q (s, a|6.,), Q(s, a|6,,) and the actor network
11(s]6,,), then update their target networks via @~ < 6,0, <+ 6, and 6, < 6, Initialize the
PER buffer R with capacity C.. Set the size of mini-batch as N,,,. Set the step length of multi-step learning
as N, . Set the policy update delay as N, ,. Set target network update factor as 7;

2 for te = [1, temax] do
3 Set time step n = 0. Rest the UAV to its initial location as @, (n) € &S. Initialize a sliding buffer
R with capacity N,,,;
4 repeat
5 Select and execute action @y, = (g (1) |6 ) + 9, then observe the next state gy, (12 +
1) and the immediate reward 7y, = 7[qy (n + 1)]:
6 Get and record 1-step transition { @y, (1), an, Tn, §u (n + 1)} into R;
7 if n > N,,. then
8 Generate the N,,, ;-step reward = N f i TTOM R and record
N, .-step experience {qa, (1 — N, s GQu(n)} into R;
9 end
10 Sample a mini-batch of N, N, -step transitions from R with priorities p, ,
1 Yoy =T \W+'y“"“'l}:,i{lQ(q'u(nmwNms), 1(Gu (M b+ Nms)0,)+97167);
12 Compute the mean squared losses of the twin critics as
£(600) = e T,y T W — Q@ (np)s an,, 100))%
13 Update the twin critic networks via éradienl decent aiming to minimize £°(6.,);
14 Every N, times the twin critic netowrks are trained, update the actor network via gradient
ascent to maximize J(e) = N:nz, Sy Qs (5,180,160, then update the target actor and
target twin critics in a soft copy fashion as 6~ « -6 + (1 — )o—;
15 Let n4 = 1:
16 until 7y (n) = qu(T) || u(n) € S || n = Niax:
17 end

Store 1-Step
Transitions

Environment Sliding

TD3 Agent Window

Generate and

Transfer Multi-
Step Transitions
The PER Buffer

Figure 1: High-level workflow of the proposed multi-step TD3-PER solution

Sample Mini-batch

IV. NUMERICAL RESULTS

As shown in Fig. 2(a), the UAV’s horizontal exploration
airspace is set as A : [0,1] x [0,1] km, in which the
building distribution and the locations of [ € L. and w are
specified. Note that the considered building distribution is
generated according to the statistical model recommended
by the International Telecommunication Union (ITU) [13],
of which the 3-dimensional (3D) view is depicted in Fig.
2(b). Both the actor and the twin critics involve 3 hidden
layers with 512, 256, 128 neurons and relu activations, while
the activation functions for the output layers of the actor
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Parameters

| Values

Parameters

| Values || Parameters | Values

Side length of A D 1 km Duration of time slot A, 05s Speed of the UAV V' 50 m/s
Carrier frequency fe 2 GHz Flying altitude of UAV A 100 m Location estimation error variance c,rf 0.025
AWGN variance af -90 dBm UAV’s transmit power P, 30 dBm Covert requirement ¢ 0.001

Noise uncertainty degree ¢ 3dB Nominal noise power & 10°° Amount of numerical evaluation & 1000

ITU building distribution parameter é& 0.2 ITU building distribution parameter B 40 ITU building distribution parameter 5 25

Amount of buildings BD2 40 Expected size of each building &/B 0.005 km? Maximum height of buildings 70 m
Replay buffer capacity C' 10° Mini-batch size N, 32 Multi-step learning length N, . 6

Policy update delay N, 10 Target network update factor 7 10~ Actor noise power variance oi 1

Target Actor noise power variance o 1 UAV exploration step threshold Nipax 150 Reaching destination bonus 4000
Hitting boundary penality -10000 Visiting covert hole penality -1000 Learning rates for actor/critic 10°'/107°

Table I: Simulation Parameter Settings

1o ¥ty 04

0% 02 &

- x (km). o -
(@) Local building distribution (b) 3D view of local building distribution

and the twin critics are tanh and linear, respectively. Unless
otherwise mentioned, the parameter settings for simulation are
in line to Table I. One DRL-related baseline, i.e., D3QN and
another non-learning baseline, i.e., straight-line, are considered
to conduct the performance comparison. To enable the D3QN,
we have to discretize the action space. In the simulation, the
discrete action space for D3QN-based solution is chosen as
A = {[-1,0],[0,1],[1,0],[0, —1]}, corresponding to move
left, forward, right and backward, respectively.

Fig. 2(c) demonstrates the comparison on designed trajec-
tories, where the purple diamond indicates the destination
and the transparent white region means the covert hole. From
this figure, it is clear that the proposed multi-step TD3-PER
solution can direct the UAV to reach the destination, while
the covert hole is always being avoided alongside the whole
flight. Meanwhile, positions with higher transmission rate are
kept being preferred to be visited, even the narrow tunnel
(around coordinate (0.6, 0.1) km) between the covert hole
and the region with relatively lower transmission rate coverage
is recognized by the proposed multi-step TD3-PER solution.
Although the D3QN baseline tries to navigate the UAV to
avoid the covert hole, it fails to direct the UAV to hit the
destination and the UAV ends up crashing into the boundary,
which showcases the inflexibility caused by the compromise
from limited action options. Unsurprisingly, the straight-line
approach can always lead the UAV to reach the destination, but
it never tries to help the UAV bypass the covert hole or visit
ideal regions with stronger transmission rate quality. For more
insights, Fig. 2(d) delivers comparison on moving average
return generated via a moving window with length of 300
episodes. From this figure, one can observe that the proposed
solution converges to the highest score after training, while
D3QN baseline converges to a worse position and straight-
line approach gets the worst performance.

V. CONCLUSION

This paper investigated covertness-aware transmission
throughput maximization problem, which was solved via UAV
trajectory design from the continuous velocity domain. After

(C) Comparison on designed trajectories
Figure 2: Simulation environment and performance comparison

Episode

(d) Comparison on moving average returns

mapping the optimization problem into a MDP, a multi-step
TD3-PER solution was proposed to help the UAV find the
proper velocity within each time slot, directing the UAV from
its initial location to the destination. The effectiveness of the
proposed multi-step TD3-PER solution was validated by the
simulation results, while the corresponding advantages were
showcased via performance comparison against D3QN and
straight-line baselines.
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