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Abstract—Integrating unmanned aerial vehicles (UAVs) into
existing cellular networks encounters lots of challenges, among
which one of the most striking concerns is how to achieve
harmonious coexistence of aerial transceivers, inter alia, UAVs,
and terrestrial user equipments (UEs). In this paper, a cellular-
connected UAV network is focused, where multiple UAVs receive
messages from base stations (BSs) in the down-link, while BSs
are serving ground UEs in their cells. For effectively managing
inter-cell interferences (ICIs) among UEs due to intense reuse of
time-frequency resource block (RB) resource, a first p-tier based
RB coordination criterion is proposed and adopted. Then, to
enhance wireless transmission quality for UAVs while protecting
terrestrial UEs from being interfered by ground-to-air (G2A)
transmissions, a radio resource management (RRM) problem of
joint dynamic RB coordination and time-varying beamforming
design minimizing UAV’s ergodic outage duration (EOD) is
investigated. To cope with conventional optimization techniques’
inefficiency in solving the formulated RRM problem, a deep
reinforcement learning (DRL)-aided solution is initiated, where
deep double duelling Q network (D3QN) and twin delayed deep
deterministic policy gradient (TD3) are invoked to deal with RB
coordination in discrete action domain and beamforming design
in continuous action regime, respectively. The hybrid D3QN-TD3
solution is trained via interacting with the considered outer and
inner environments in an online centralized manner so that it can
then help achieve the suboptimal EOD minimization performance
during its offline decentralized exploitation. Simulation results
have illustrated the effectiveness of the proposed hybrid D3QN-
TD3 algorithm, compared to several representative baselines.

Index Terms—Unmanned aerial vehicle (UAV), cellular net-
works, deep reinforcement learning, interference management,
beamforming.

I. INTRODUCTION

In current markets, unmanned aerial vehicles (UAVs) [1]–
[3] are commonly communicating with their ground-based
pilots via simple point-to-point (P2P) links over unlicensed
spectrum, e.g., the industrial, scientific and medical (ISM)
band at 2.4 GHz, leading to inferior ground-to-air (G2A) trans-
mission performance, including low data throughput, limited
communication range and interference vulnerability [4]. For
realizing UAVs’ large-scale deployment and further improving
G2A communication quality, one promising approach is to
integrate UAVs into worldwide-deployed cellular networks as
aerial user equipment (UE), leveraging powerful terrestrial BSs
to support UAVs, widely known as cellular-connected UAV
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solution [5]–[14]. In contrast to P2P aerial-terrestrial commu-
nications, cellular-connected UAV technique can help establish
beyond-visual-and-radio-line-of-sight (BVRLoS) communica-
tions between terrestrial BSs and UAVs, which is beneficial
for realizing long-distance UAV application immune to range
limitation, not to mention other advantages such as enhanced
performance of reliability, security, transmission rate and
coverage [8]–[10]. Besides, cellular-connected UAV is cost-
effective because countless cellular BSs worldwide can be
reused to support A2G communications, with no requirement
on dedicated infrastructure reconstruction [9]. Unfortunately,
the current cellular networks are exclusively established for
serving ground UEs (GUEs), barely considering aerial UEs.
Specifically, BSs’ antennas in cellular networks are conven-
tionally down-tilted towards the earth for mitigating inter-
cell interferences (ICIs), which means that UAVs can only
be served via the side-lobes and thus satisfactory G2A con-
nections cannot be guaranteed in general [15], [16]. From the
perspective of forthcoming 5G-beyond (B5G) or 6G cellular
networks, the main serving objects are still GUEs, raising that
finding a proper way of involving UAVs into cellular networks
without posing negative impacts on terrestrial transmissions is
inherently of importance.

A. Related Works

Unlike terrestrial cellular transmissions where non-line-
of-sight (NLoS) pathloss appears more frequently, the first
significant difference introduced by drones is that line-of-sight
(LoS) link occurs more likely in G2A communications [17]–
[21], which plays the role as a double-edged blade. On one
hand, LoS-dominant G2A links can help relieve the sufferance
of severe multi-path fading, shadowing and pathloss, which
are common illnesses in terrestrial transmissions due to vast
existence of blockages, e.g., buildings and trees. On the other
hand, it may make drones generate stronger interferences
(or suffer more severe interferences) to (or from) BSs in
the up-link (or the down-link) transmissions. Besides, drones
can cover larger region for data transmissions blessed by
their high flying altitudes, then greater macro-diversity gain
can usually be achieved because more BSs can cooperate to
enhance G2A communication qualities in terms of throughput
and reliability [14]. Unfortunately, more co-channel interfering
sources for the drones in the down-link might be involved as
well (or, UAVs can act as the interferers to more GUEs in the
up-link) [12]. Therefore, interference coordination issue for
cellular-connected UAV networks is more intricate and must be
seriously treated. Various interference management strategies



2

have been investigated in the literature for terrestrial cellular
transmission scenario, e.g., inter-cell interference coordination
(ICIC) [22], [23], cognitive beamforming [24] and coordinated
multipoint (CoMP) communications [25]. However, they are
most likely ineffective to handle more sophisticated interfering
environment caused by UAVs with LoS-dominant G2A links
and broader wireless coverage. Therefore, interference man-
agement strategies that are adaptive to cellular-connected UAV
networks should be delicately designed to achieve efficient
spectrum sharing with coexisting GUEs. Up to date, there
exist several related works devoted to offering interference
management solutions for cellular-connected UAV networks
[4], [10]–[14]. Chandhar et al. [10] leveraged multiple-input
multiple-output (MIMO) technique to deal with interference
coordination problem of single-antenna UAV swarms served
by a multiple-antenna BS. Senadhira et al. [11] studied the
impacts of UAV’s trajectory and altitude for up-link non-
orthogonal multiple access (NOMA) cellular-connected UAV
network, in which ICI issue was dealt with NOMA technique.
However, protecting the GUEs located in current cell or other
cells within the coverage of UAVs was not considered in these
works, which may significantly deteriorate the transmission
performance of potential co-channel GUEs. Fortunately, some
recent literature took care of interference control issue while
protecting GUEs in cellular-connected UAV networks [4],
[12]–[14]. Liu et al. [4] proposed a new cooperative interfer-
ence cancellation strategy for multi-beam cellular-connected
UAV up-link transmissions, in which co-channel interference
elimination and sum-rate maximization were investigated with
the help of transmit beamforming design. Mei et al. [12]
studied interference mitigation issue in up-link communi-
cations from a UAV to BSs, where weighted sum-rate of
the UAV and GUEs was maximized via jointly optimizing
up-link cell association and power allocation. Pang et al.
[13] investigated up-link transmission optimization problem
on sum-rate of UAV and co-channel GUEs within NOMA-
aided cellular-connected UAV networks, where successive
interference cancellation (SIC) was implemented at both UAV-
paired BSs and other BSs serving GUEs with the same band
to cope with strong interferences generated by UAV to GUEs.
Mei et al. [14] proposed a BS-based cooperative beamforming
(CB) scheme for cellular-connected UAV transmissions to
suppress interferences caused by co-channel GUEs to UAV,
where the formulated UAV’s received signal-to-interference-
plus-noise ratio (SINR) maximization problem was solved by
a divide-and-conquer approach. However, these works contain
practical limitations. First, they assumed fixed-location UAV,
without involving UAV’s mobility. Second, the G2A channel
models they applied are based on either oversimplified free-
space pathloss channel model or slightly advanced probabilis-
tic LoS channel model. It is worth noting that probabilistic
G2A channel model can only reflect G2A pathloss gain in
an expected manner without considering local building distri-
bution where UAVs are actually deployed [6]. Last but not
least, traditional optimization-aided solutions they proposed
are commonly inefficient in solving complex interference
coordination problems due to non-convexity, even given strong
assumptions of needed evaluation factors’ availability.

B. Contributions

Motivated by the above observations, radio resource man-
agement (RRM) issue of interference coordination and beam-
forming design within down-link cellular-connected UAV net-
works is considered in this paper, where the fundamental chal-
lenge of integrating UAVs into worldwide cellular networks
that are designed delicately for serving GUEs is taken care
of, while machine learning (ML)-native solution for achieving
harmonious coexistence of non-terrestrial transceivers, i.e.,
UAVs, and terrestrial nodes, i.e., GUEs, is designed.

The main contributions of this paper are stated as follows.

• Different from related literature adopting statistical G2A
channel model for mathematical tractability, e.g., proba-
bilistic G2A channel model, LoS/NLoS G2A pathloss is
tracked via checking potential blockages between UAV
and BSs in this paper, according to one realization
of local building distribution suggested by International
Telecommunication Union (ITU) [26]. The considered
G2A channel model is more practical than its statistical
counterpart reflecting ergodic pathloss gain over a large
number of building distribution realizations because the
layout of local area can barely vary in real life.

• A joint time-frequency resource block (RB) allocation
and beamforming design optimization problem is for-
mulated to minimize the ergodic outage duration (EOD)
of cellular-connected UAVs, for arbitrary trajectory and
small-scale fading modelling. Specifically, the RB al-
location is utilized to assign proper RB resource to
UAVs while ensuring that the terrestrial transmissions
are not violated by the potential co-channel interferences
generated from BSs appointed to serve UAVs. To enhance
G2A transmission quality after RB coordination, transmit
beamforming is invoked in the presence of imperfect G2A
channel estimation.

• The practical consideration of building distribution based
pathloss model and the generality of the formulated EOD
minimization problem to trajectory and small-scale fading
make it extremely difficult to be solved by classical op-
timization techniques, e.g., convex optimization. To cope
with this hassle, a deep reinforcement learning (DRL)
[27], [28] solution is proposed after mapping cellular en-
vironment into outer and inner Markov decision processes
(MDPs), reflecting BSs’ dynamic RB possessions and
small-scale (fast) fading’s time-varying characteristics,
respectively. The outer MDP contains discrete action
space (i.e., RB indices), which is tackled by invoking
deep double duelling Q network (D3QN), while the
continuous action space (i.e., beamforming vectors) in the
inner MDP is coped with twin delayed deep deterministic
policy gradient (TD3) approach. The hybrid D3QN-TD3
solution learns to optimize EOD performance via interact-
ing with environments in the online centralized training
phase, after which the trained D3QN and TD3 agents can
be deployed to offer independent EOD performance gains
in the phase of offline decentralized exploitation.

This paper contains plenty of notations and abbreviations,
which may lead to difficulty in following, for relieving which
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Table I: Descriptions of selected abbreviations and key notations
Abbreviations Description Notations Description

BS/G2A/UE base station/ground-to-air/user equipment b/u/g/k notation for denoting BS/DUE/GUE/RB
GUE/DUE/ICI ground UE/drone UE/inter-cell interference B/U/G/K set of BSs/DUEs/GUEs/RBs
LoS/NLoS/RB line-of-sight/non-LoS/resource block q⃗b/q⃗u/q⃗g coordinate vector of BS/DUE/GUE
EOD/RBP ergodic outage duration/RB possession T Ib(p) set of first p-tier BSs encompassing BS b

D3QN deep double duelling Q network Bk
o/B̂

k
o/B̆

k
o set of occupied/potential/available BSs

TD3 twin delayed deep deterministic policy gradient card(·)/Ck
u set’s cardinality/RB association indicator

ITU international telecommunication union h⃗/w⃗ small-scale fading/beamforming vector
B2G/B2D BS to GUE/DUE E/C mathematical expectation/RBP map
CNN/RBP convolutional neural network/RB Possession †/∇ Hermitian transpose/taking gradient
RSRP/RSRQ reference signal received power/quality ⪯ /∥ · ∥ element-wise inequality/Euclidean norm

Table I is provided. Note that a more comprehensive list of
notations and their descriptions can be found in Table II.

Organization: Section II presents RB allocation criterion,
channel model and problem formulation. Section III develops
the proposed hybrid D3QN-TD3 algorithm. Simulation results
and conclusion are stated in Sections IV and V, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, RRM problem of RB allocation and beam-
forming design for down-link cellular-connected UAV network
is considered, where a set B = {1, . . . , B} of B terrestrial BSs
serves a set U = {1, . . . , U} of U drone UEs (DUEs) and a set
G = {1, . . . , G} of G GUEs using a set K = {1, . . . ,K} of K
RBs at each BS, within a given subregion of cellular network,
e.g., Fig. 1(a). Each DUE is assumed to equip single antenna
for receiving wireless information and so as each GUE, while
all the terrestrial BSs employ antenna array for message
emitting. Specifically, each terrestrial BS b ∈ B possesses
M antennas, serving gb GUEs with orthogonal RBs (so there
does not exist intra-cell interferences within each cell), where
gb ≥ 1,∀b ∈ B and

∑B
b=1 gb = G. Different from terrestrial

transmissions, DUEs fly in the sky with high altitudes, leading
to higher probability of achieving LoS-dominant G2A links
from BSs. Thus, DUEs are able to connect with more BSs
within their wireless coverage. However, this characteristic
may not only induce more and stronger desired signals but also
result in richer co-channel interferences. To practically reflect
the aforementioned double-edged blade feature, each DUE is
considered to be associated with at least one BS when possible,
taking advantage of macro-diversity gain from terrestrial BSs.
Unfortunately, the assigned RB for a DUE might be already
occupied by some GUEs due to heavy frequency reuse in
cellular networks, severely interfering DUE via LoS-dominant
channels. Therefore, RB allocation plays an important role in
the considered cellular-connected UAV network. Besides, after
RB assignment for a DUE, wireless transmission performance
can be enhanced via invoking transmit beamforming technique
at the corresponding serving BSs. Note that we do not consider
transmit power control strategy at each BS, and thus we fix
Pb = P for all terrestrial BSs.1

1In our considered model, it is straightforward to infer that all BSs should
communicate with their paired DUEs using maximum transmit power, which
may cause stronger ICIs to co-channel GUEs. Besides, all the occupied BSs
are supposed to apply their minimum transmit power to reduce the level of co-
channel interference to DUEs, which inevitably deteriorates the transmission
quality for their severing GUEs. Therefore, to tackle this dilemma, we fix
the transmit powers of all considered BSs as a constant P . However, a well-
designed transmit power coordination is indeed an important approach for
interference management in cellular networks, which is thus highlighted as
one essential research direction of this work’s extension.

The 3-dimensional (3D) locations of each DUE, each
ground BS and each GUE are denoted as q⃗u = (xu, yu, hu),
q⃗b = (xb, yb, zb) and q⃗g = (xg, yg, 0), respectively. For
simplicity and without loss of generality, the flying altitude
of each DUE is assumed universally as hu = h and the height
of each BS’s antenna is set identically as zb = z, where h≫ z
stands. Each DUE is supposed to reach its destination q⃗u(D)
from predefined initial location q⃗u(I) with time cost Tu.2

For clarity, the considered subregion is formulated as a
cubic sphere specified by [xlo, xup] × [ylo, yup] × [zlo, zup],
where the subscripts "lo" and "up" represent the lower and
upper boarders of this 3D airspace, respectively. Furthermore,
the coordinate of arbitrary DUE u at time t ∈ [0, Tu]
should locate in the range of q⃗lo ⪯ q⃗u(t) ⪯ q⃗up, where
q⃗lo = (xlo, ylo, zlo), q⃗up = (xup, yup, zup) and ⪯ denotes the
element-wise inequality. The initial and final locations of each
DUE are indicated as q⃗u(0) = q⃗u(I) and q⃗u(Tu) = q⃗u(D),
respectively. Therefore, the trajectory3 of each DUE u can be
fully traced by q⃗u(t),∀t ∈ [0, Tu].

A. The RB Allocation Criterion

To properly manage ICIs among G GUEs, the following RB
assignment criterion is adopted at all BSs [12], [14]. The set
T Ib(p) is defined to denote the first p-tier BSs that encompass
a specific BS b ∈ B in the considered model, where 1 ≤ p ≤ 3
and T Ib(p) includes this focused BS. When arbitrary RB has
been assigned to any GUE in the serving cells of BSs from
T Ib(p), the focused BS b should avoid allocating this RB
to other GUEs in its corresponding cell.4 To ensure that the
total RB resource is sufficient for all GUEs in cells of BSs
from T Ib(p), the constraint

∑
b̂∈T Ib(p) gb̂ ≤ K should hold,

where card(T Ib(p)) = 3p2 + 3p + 1 and card(·) indicates
the cardinality of a set. In this regard, the focused BS b
cannot generate any ICIs to GUEs in the serving cells of

2The application of UAVs as DUEs corresponds to various use cases, inter
alia, cargo delivery and aerial inspection, where DUEs have to maintain solid
connectivity with terrestrial BSs for accomplishing their respective missions
[6], especially for enabling BVRLoS piloting [9]. For specific DUE u ∈ U ,
the flying duration Tu is determined by its trajectory and velocity.

3Note that this paper concentrates on RRM-aided performance optimization
from the perspective of wireless communications, while DUEs are assumed to
fly aloft with effective collision avoidance system (CAS), e.g., the intelligent
and multi-modal software solution named FlytCAS with onboard obstacle
avoidance sensors, powered by possible propulsion solutions, e.g., electric
propulsion systems with motors. Thus, viewpoint of UAV’s propulsion power
cost is beyond the scope of this paper. However, taking the long-term
propulsion power consumption into consideration is worth being emphasized
as one important extension direction for this work.

4In the case of sufficiently large p, the ICIs among all GUEs become
ignorable, thanks to sufficient frequency reuse and severe terrestrial pathloss.
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Figure 1: Illustrations of system model, the first p-tier set of BS b and an instance of BS grouping in the case of p = 1, where
card(T Ib(1)) = 7, card(T Ib(2)) = 19 and card(T Ib(3)) = 37

BSs from T Ib(p). For GUEs outside the serving cells of BSs
from T Ib(p), the potential ICIs caused by the focused BS b
are assumed to be negligible, due to severe terrestrial NLoS
pathloss and shadowing. For each possible RB k, some BSs
may already occupy it to serve GUEs in their corresponding
cells. These BSs are recognized as the occupied BSs, which
are denoted by the occupied BS set Bko ⊂ B. Furthermore, the
set B̂ko = B\Bk

o includes all the potential BSs, where the RB
k is idle. For a specific RB k assigned to serve a DUE, the
corresponding associated BSs come from the potential set B̂ko ,
while all the non-associated co-channel interferences root from
the occupied set Bko . For a DUE u associated with an RB k, it
is supposed to be paired with all BSs in the potential set B̂ko ,
to take the advantage of macro-diversity gain. However, this
may generate additional ICIs to GUEs in the serving cells of
BSs from T Ib∈B̂k

o
(p). To avoid ICIs attenuating the receiving

quality of existing GUEs over the same RB, a potential BS
b ∈ B̂ko can be allowed to pair DUE if and only if there are
no other BSs applying RB k in its first p-tier neighbours, i.e.,

Bko ∩ T Ib∈B̂k
o
(p) = ∅. (1)

Then, the available BS set B̆ko ⊂ B̂ko is defined to denote the
potential BSs satisfying (1). For ease of understanding, Fig.
1(b) and Fig. 1(c) illustrate the first p-tier set for p = 1, 2, 3,
and one example of BS grouping for an RB k, respectively.

B. Channel Models

1) BS-to-GUE (B2G) Channel Model: The B2G channel
may include large-scale fading caused by NLoS pathloss and
corresponding small-scale fading in practice. Specifically, the
terrestrial small-scale fading component is denoted as h⃗bg ∈
C1×M ,∀b ∈ B, g ∈ G. Note that the modelling of h⃗bg is
trivial for this paper, which means that h⃗bg can take form
of any practical and feasible small-scale fading model, e.g.,
Rayleigh fading channel. In the section of numerical results,
an example of terrestrial small-scale fading will be specified
to perform the simulation.

2) BS-to-DUE (B2D) Channel Model: According to 3GPP
urban-macro (UMa) channel model [29], the expected B2D
pathloss in dB can be expressed as PLbu = PrLoSPLLoS +
PrNLoSPLNLoS, where PrLoS represents the occurrence proba-
bility of LoS link, PrNLoS = 1− PrLoS indicates that of NLoS

channel, and PLLoS and PLNLoS denote the pathlosses for LoS
and NLoS links, respectively. Specifically, we have

PrLoS =


min{ ε1

rbu
, 1} [1−

exp
(
− rbu

ε2

)]
+

exp
(
− rbu

ε2

)
, 22.5m < h ≤ 100m

1, 100m < h ≤ 300m

, (2)

PLl =


28.0 + 22 log10 (dbu)+

20 log10 (fc) , l = LoS
−17.5 + [46− 7 log10 (h)]×
log10 (dbu) + 20 log10

(
40πfc

3

)
, l = NLoS

, (3)

in which rbu =
√

d2bu − h2, ε1 = max{460 log10 (h) −
700, 18}, ε2 = 4300 log10 (h)−3800, fc represents the carrier
frequency and dbu = ||q⃗u − q⃗b||2 calculates the Euclidean
distance between DUE u and ground BS b. Since the proposed
design on beamforming vectors aims to be adaptive to arbitrary
small-scale fading environment, we denote h⃗bu ∈ C1×M ,∀b ∈
B, u ∈ U as the small-scale fading component for B2D
channels and pose no assumptions on its modelling, while
an example of specific B2D small-scale fading model will be
discussed in numerical result section.

To practically reflect the characteristics of B2D channels
in the considered subregion, one realization of the statistical
model suggested by the ITU [26] is generated to formulate
the building distribution, including high-rise structures’ 2D
locations on the ground and their corresponding heights. There
are three key parameters in the ITU building distribution model
[16], [30]: 1) α̂ indicates the ratio of land region covered by
buildings to the total land area; 2) β̂ represents the mean of
buildings per unit area; and 3) γ̂ determines the distribution
of building heights, which is typically following Rayleigh
distribution with mean γ̂ > 0. Note that the B2D pathlosses
are tracked in terms of average large-scale channel gain via
calculating the occurrence probabilities of LoS/NLoS links as
depicted in (2), in the vast majority of related literature. This
kind of approach is more mathematically tractable, however,
it can only reflect the ergodic characteristics of B2D channels
over many realizations of building distribution [5]–[7]. On the
contrary, in this paper, the occurrences of LoS/NLoS links are
alternatively tracked via checking whether the line of B2D
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Figure 2: The considered building distribution

channel is blocked or not by any building, given one realization
of ITU building distribution model.5 Then, the corresponding
type of large-scale pathloss can be accurately determined for
each time of B2D channel regeneration. Fig. 2 illustrates the
considered one realization of local building distribution in this
paper, where 25 building clusters and 37 BSs are depicted in
a square subregion with side length D = 3 km, road width
D̂ = 0.02 km, α̂ = 0.3, β̂ = 103 buildings/km2 and γ̂ = 20
m. With these parameter settings, the total amount of buildings
is β̂D2 = 927 and the expected size of each building is
α̂/β̂ ≈ 0.003 km2. Besides, the maximum height of buildings
is clipped to be under 70 m, and the locations of BSs are
presented by white asterisks in Fig. 2(a).

C. SINR at DUE

Denote Ck
u(t) ∈ {0, 1} as the RB association indicator

which means that DUE u is occupying RB k at time t when
Ck

u(t) = 1, and Ck
u(t) = 0 otherwise. Each DUE is assumed

to occupy at most one single RB each time6, then we have∑K
k=1 C

k
u(t) ≤ 1.

If RB k is feasible to be assigned to DUE u, i.e., Ck
u(t) =

1, it has to satisfy the RB assignment criterion presented in

5Note that our approach is more practical because the building distribution
of a subregion in real world can hardly vary over time, say, days even years.

6In this paper, we focus on the scenario in which each DUE can only
occupy one single RB each time. Integrating more sophisticated RB allocation
approaches might be considered in our future works.

Subsection II-A. Then, all BSs in the potential set B̂ko meeting
the regulation (1), i.e., b ∈ B̆ko , are recognized as the available
BSs for DUE u, to take the advantage of macro-diversity gain.
Besides, all BSs b ∈ Bk

o occupying the selected RB k should be
classified as the source of co-channel ICIs. Thus, the received
signal of DUE u over RB k at time t can be given by

yku(t) = Ck
u(t)

∑
b∈B̆k

o

√
10

−PLl
10 h⃗buw⃗buxu(t)+

∑
b∈Bk

o

√
10

−PLl
10 h⃗buw⃗bgxbg(t) + nk

u

 , (4)

where w⃗bu ∈ CM×1 indicates the transmit beamforming vector
at BS b ∈ B̆ko for DUE u, w⃗bg ∈ CM×1 represents the transmit
beamforming vector at BS b ∈ Bko for corresponding GUEs,
xu(t) ∼ CN (0, P ) is the intended message7 from BS b to
DUE u, xbg(t) ∼ CN (0, P ) implies the signal for GUEs,
and nk

u ∼ CN (0, σ2) denotes the received additive complex
Gaussian noise (AWGN) at DUE u. Note that the explicit
type of large-scale fading between BS b and DUE u at time
t, i.e., l = {LoS,NLoS}, can be determined via checking
possible blockages according to the considered one realization
of local building distribution mentioned in Subsection II-B2.
Taking advantage of macro-diversity gain, all signals from the
associated BS b ∈ B̆ko are recognized as the legitimate in-
phase information and thus can be added constructively at
DUE u [14], [31]. The channel state information (CSI) of
h⃗bu, b ∈ B̆ko and h⃗bg, b ∈ Bk

o can be estimated via widely-
applied MMSE-based methods. Unfortunately, the CSI cannot
be perfectly obtained in practice, due to estimation error and/or
feedback delay [32], [33]. Therefore, the imperfect CSI model
on h⃗bu, b ∈ B̆ko is considered in this paper, expressed as

h⃗bu =
√
ρ
⃗̈
hbu +

√
1− ρ∆⃗, (5)

where ⃗̈hbu indicates the estimated CSI, ∆⃗ ∼ CN (0, I) denotes
the CSI estimation error vector and ρ ∈ [0, 1] is the correlation
coefficient between h⃗bu and ⃗̈

hbu. For an impractical case
ρ = 1, i.e., perfect CSI availability at the available BSs, max-
imum ratio transmission (MRT) precoding w⃗bu = h⃗†bu/∥h⃗bu∥
is obviously the optimal option. However, w⃗bu should be
designed as per the estimated CSI ⃗̈

hbu, whose performance
will be inevitably deteriorated due to the existence of CSI
estimation error. Then, instantaneous SINR of DUE u at time
t can be calculated as [14]

Γu(t) =

K∑
k=1

Ck
u(t)

[∑
b∈B̆k

o

√
P10

−PLl
10 |⃗hbuw⃗bu|

]2
Iku(t) + σ2

, (6)

where Iku(t) =
∑

b∈Bk
o
P10

−PLl
10 |⃗hbuw⃗bg|2 means ICIs intro-

duced by co-channel BSs from Bko .

7The available BSs are supposed to be able to cooperatively transmit the
intended signal to DUE, managed by a central coordinator (to be introduced)
using, e.g., the cooperative beamforming technique [14], while the procedure
and overhead of cooperative transmissions are out the scope of this paper.
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D. Problem Formulation

It is clear that the received SINR of DUE u at time t, i.e.,
formula (6), is a random variable because of the randomness
introduced by, e.g., small-scale fadings and RB allocation.
Specifically, the RB allocation affects Γu(t) in terms of how
many available BSs and interfering BSs will be involved, i.e.,
card(B̆ko ) and card(Bko ), respectively. Then, with given RB
allocation, the transmit beamforming vector w⃗bu should be
designed to adapt to h⃗bu. Hence, the corresponding transmis-
sion outage probability (TOP) is formulated as a function of
Ck

u(t) and w⃗bu, given by

TOPu{Ck
u(t), w⃗bu} = Pr [Γu(t) < Γth] , (7)

where Pr outputs the probability calculated with respect to
(w.r.t.) the aforementioned small-scale fadings and B2D trans-
mit beamforming vector, for given RB allocation. Then, the
EOD of DUE u travelling with trajectory q⃗u(t),∀t ∈ [0, Tu]
from q⃗u(I) to q⃗u(D) can be expressed as

EODu{Ck
u(t), w⃗bu} =

∫ Tu

0

TOPu{Ck
u(t), w⃗bu}dt. (8)

This paper assumes that DUEs move with known trajec-
tories q⃗u(t),∀u ∈ U , t ∈ [0, Tu] and constant velocity Vu,
then Tu in (8) can be implied as a fixed parameter posing no
impacts on the overall integral.8 Hence, the EOD of arbitrary
DUE u is fully determined by Ck

u(t) and w⃗bu. Without loss of
generality, in the following contents of this paper, a specific
DUE in Fig. 1 is focused to evaluate our proposed scheme
which can be easily applied to other DUEs with orthogonal RB
assignment. For enhancing the down-link transmission quality
of DUE across its travelling trajectory q⃗u(t), this paper focuses
on minimizing its EOD. Then, the corresponding optimization
problem can be stated as

(P1) : min
Ck

u(t),w⃗bu

EODu{Ck
u(t), w⃗bu}, (9a)

s.t.
K∑

k=1

Ck
u(t) ≤ 1,∀t ∈ [0, Tu], (9b)

||w⃗bu||2 = 1,∀b ∈ B̆ko ,∀t ∈ [0, Tu], (9c)
Ck

u(t) ∈ {0, 1},∀k ∈ K,∀t ∈ [0, Tu], (9d)
q⃗lo ⪯ q⃗u(t) ⪯ q⃗up,∀t ∈ [0, Tu]. (9e)

The constraint (9b) makes sure that the DUE can at most
occupy one single RB each time. The constraint (9c) is the
normalization requirement for transmit beamforming vector,
which ensures that the transmit power of each available BS
b ∈ B̆ko equals P . The constraint (9d) indicates that Ck

u(t)
is a binary variable. The constraint (9e) claims that DUE’s
trajectory should remain in the considered subregion.

It is challenging to solve the proposed optimization problem
(P1), given the listed constraints. The main difficulties can

8Note that RB allocation and beamforming design are independent of
trajectories, implicating that the proposed solution is suitable for arbitrary
UAV trajectory. This setup can be justified by the following facts: 1) as
elaborated in Subsection II-A, RB coordination for DUEs depends on the
current RB possession of each BS and has nothing to do with DUEs’ mobility;
and 2) beamforming design depends on the estimated CSI which is related to
the corresponding modelling of small-scale fading. Thus, trajectory design is
trivial in the considered system model and thus excluded from this paper.

be portrayed as follows: 1) the closed-form expression of
EODu{Ck

u(t), w⃗bu} should be derived, which is extraordi-
narily sophisticated, if not impossible; 2) the variations of
LoS/NLoS pathloss, small-scale fading h⃗bu and the B2G
transmit beamforming vector w⃗bg should be taken into consid-
eration, which are dynamic over time horizon and dependent
on their modellings; 3) even given the closed-form expression
of the optimization object (9a) and the perfect knowledge
of the considered cellular-connected UAV network, it is still
mathematically inefficient to be tackled for the non-convexity
of mix-integer constraint (9d) and that of the optimization
object (9a) w.r.t. Ck

u(t) and w⃗bu. Fortunately, DRL is famous
for being able to learn patterns from unknown environments in
a trial-and-error fashion and thus can help solve sophisticated
optimization problems via inherently maximizing its long-term
return of raw optimization objective. Thus, this paper resorts
to initiating a DRL solution to tackle (P1).

III. THE PROPOSED DRL-AIDED ALGORITHM

A. The Formulation of MDP

To design DRL-based solution for the proposed optimization
problem (P1), the first step is to formulate (P1) into MDP
which is based on discrete time slots [34]. The length of time
slot is defined as δu for the considered model and thus the
number of time slots equals Nu = Tu/δu for the DUE u.
Note that the duration of time slot δu should be picked as
small as possible, to achieve that the distances between the
DUE and BSs remain approximately constant in each time
slot. In this regard, the EOD expression can be rewritten as

EODu{Ck
u(n), w⃗bu} ≈

Nu∑
n=1

δuTOPu{Ck
u(n), w⃗bu}. (10)

However, even with given Ck
u(n), the closed-form

expression of the transmission outage probability
TOPu{Ck

u(n), w⃗bu} is still difficult to be derived, for its
complex formulation and the lack of designed B2D transmit
beamforming vector w⃗bu. Alternatively, this challenge
can be circumvented via numerical evaluation on the raw
measurements of received signals at the DUE. The reason
is that, compared to the length of time slot δu (typically on
the magnitude of seconds), the length of channel coherence
blocks (typically on the magnitude within milliseconds) is
relatively insignificant [6], [7]. Then, provided with Ck

u(n)
for a time slot n, the indicator of TOP can be defined
as ITOPu{Ck

u(n), w⃗bu(n, i); ĥ(n, i)} = 1 in the case of
Γu(n, i) < Γth, and ITOPu{Ck

u(n), w⃗bu(n, i); ĥ(n, i)} = 0
otherwise, where ĥ(n, i) and w⃗bu(n, i) indicate one realization
of small-scale fadings and that of corresponding beamforming
vector, respectively.

Then, the corresponding TOP can be calculated as

TOPu{Ck
u(n), w⃗bu} =

Eĥ,w⃗

[
ITOPu{Ck

u(n), w⃗bu(n, i); ĥ(n, i)}
]
. (11)
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To realize the average calculation Eĥ,w⃗ over ĥ and w⃗ in
(11), ς times of SINR measurement should be performed.9

Furthermore, the arithmetic TOP of the DUE u can be ex-
pressed as

¯TOPu{Ck
u(n), w⃗bu} =

1

ς

ς∑
i=1

ITOPu{Ck
u(n), w⃗bu(n, i); ĥ(n, i)}. (12)

When sufficiently large amount of SINR measurements is
performed, i.e., ς ≫ 1, the statistical average in (11) can be
alternatively replaced by its arithmetic counterpart in (12).10

Thereafter, the EOD expression in (10) can be modified as

EODu{Ck
u(n), w⃗bu} ≈

Nu∑
n=1

ς∑
i=1

δu
ς
ITOPu{Ck

u(n), w⃗bu(n, i); ĥ(n, i)}. (13)

Then, the original optimization problem (P1) can be approx-
imately revised as

(P2) : min
Ck

u(n),
w⃗bu(n,i)

Nu∑
n=1

ς∑
i=1

δu
ς
ITOPu{Ck

u(n), w⃗bu(n, i); ĥ(n, i)},

(14a)

s.t.
K∑

k=1

Ck
u(n) ≤ 1,∀n ∈ [1, Nu], (14b)

||w⃗bu(n, i)||2 = 1,∀b ∈ B̆ko ,∀n ∈ [1, Nu], (14c)
Ck

u(n) ∈ {0, 1},∀k ∈ K,∀n ∈ [1, Nu], (14d)
q⃗lo ⪯ q⃗u(n) ⪯ q⃗up,∀t ∈ [1, Nu]. (14e)

Inspired by cloud radio access network (C-RAN) [35] and
cell-free (CF) distributed MIMO [36], the terrestrial BSs are
controlled by a central coordinator (C2)11 via high-speed
fronthaul links, e.g., optical fiber, to realize the joint RB
allocation and beamforming design task. Once the DUE u
registers into the cellular network, the C2 will first check
the overall RB availability of all BSs, after which a map
of RB possession (RBP) formulated as a 2D matrix C(n) =
[Ck

b (n)]b×k will be generated. Note that Ck
b (n) = 1 if RB k

is occupied by BS b at time slot n and Ck
b (n) = 0 otherwise.

Then, for each RB k, following the RB allocation criterion
presented in Subsection II-A, the corresponding occupied set
Bko , the potential set B̂ko and the available set B̆ko can be
determined. Taking the advantage of macro-diversity gain, the
C2 will assign all available BSs b ∈ B̆ko to serve the DUE
cooperatively. Note that C(n) remains constant within each
time slot and varies among different time slots12, capturing
the dynamics of RBP at terrestrial BSs. For each time slot,
the current location of DUE q⃗u(n) is observable. Then, the

9The existing soft handover technique, accompanied by reference signal
received power (RSRP) and reference signal received quality (RSRQ) reports,
can be applied to help complete this kind of task [6].

10In the case of ς → +∞, limς→+∞ ¯TOPu{Ck
u(n), w⃗bu} =

TOPu{Ck
u(n), w⃗bu} can be guaranteed theoretically.

11The C2 is typically hosted in the edge cloud platform, and thereby
provides high-performance computing and centralized signal processing for a
large number of UEs’ data.

12To avoid frequent handover, the selected RB k is considered unchanged
within each time slot.

large-scale fading distribution between the DUE and BSs can
be traced, via checking the potential blockages between the
DUE and each BS according to the local building distribution
as mentioned in Subsection II-B. From the point view on
SINR in (6), the allocated RB k serving the DUE can affect
the value of SINR in terms of how many desired channels
and interfering links are introduced. Hence, the selection of
RB resource can inherently impact the EOD performance and
should be delicately assigned. Next, given specific RB within
each time slot, the beamforming strategy adapting to the time-
varying small-scale fading component can further affect the
EOD performance.

To handle the aforementioned two-step process, a hybrid
D3QN-TD3 algorithm13 is proposed, in which an outer MDP
is formulated for the D3QN agent while an inner MDP is
forged for the TD3 agent. Specifically, the D3QN determines
which RB should be selected for each time slot and the TD3
outputs the proper beamforming vector for each link between
the DUE and BSs in the available BS set. Furthermore, the
considered cellular-connected UAV network is divided into the
outer environment and the inner environment. For time slot
n, the DUE’s location q⃗u(n) and the RBP map C(n) can be
observed from the outer environment. The inner environment
is defined to reflect the time-varying characteristic of small-
scale fading, which is dependent on the outer environment. The
reason roots from that the B2D channel’s small-scale fading
component is subject to the corresponding experienced type
of pathloss in practice, i.e., LoS or NLoS.

B. Description of the Hybrid D3QN-TD3 Solution

To derive a flexible solution solving (P2) in a dynamic RBP
and time-varying small-scale fading scenario, both D3QN and
TD3 networks in the proposed hybrid D3QN-TD3 algorithm
are trained interactively. Specifically, the D3QN network maps
the outer state and the RB selection into Q values14, while the
actor of TD3 agent transforms the inner state to beamforming
vector and the critic of TD3 network evaluates the correspond-
ing Q values.

1) D3QN: To tackle the RB allocation problem, state-of-
the-art deep Q network (DQN) with duelling architecture [37]
will be invoked to approximate Q function for the outer
MDP. In contrast to the original DQN method, the duelling
DQN explicitly separates the estimations of state value and
the corresponding action advantages into two independent
streams. For clarity, Fig. 3 depicts the network architecture
of duelling DQN, where Q values are calculated via taking
aggregation of the estimated state value and state-dependent
action advantages. The duelling architecture, i.e., the two
steams of neural networks, can help approximate Q values
more robustly and efficiently when Q values of various actions
with the same state are indistinguishable.

13Please note that the proposed DRL-aided solution is trained online at the
C2, rather than each BS.

14The Q value Qπ(s, a), i.e., state-action value, derives the discounted
accumulated-rewards and reflects the long-term return after executing action
a over state s following current action selection policy π, which is the typical
metric to be maximized within DRL regime [37], [38].
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Figure 3: Architecture of CNN-attached duelling DQN

The outer MDP for the D3QN agent can be formulated
as follows. The outer state s is the observed RBP map
C(n)15, while the outer action a refers to the selected RB
k∗ = arg

k
{Ck

u(n) = 1}. When the dimensionality of C(n)
is significant, the computation and training burdens could
be unbearable if the RBP map is simply flattened and then
fed to the input layer of D3QN. To circumvent this issue, a
convolutional neural network (CNN) is attached to the D3QN,
for efficiently capturing the features of the RBP map and
compressing the data fed into the D3QN. Specifically, the
CNN contains three convolutional layers, i.e., Conv1, Conv2
and Conv3, as depicted in Fig. 3 where the corresponding
size of kernel, amount of filter and size of stride are denoted.
Following each convolutional layer, a standard max pooling
layer with pool size 2× 2 and stride 2× 2 is invoked. In the
end, the pooled feature maps will be flattened into a vector
which will then be fed into the input layer of D3QN. The
considered optimization problem is fully determined by the
value of SINR, given SINR threshold. In other word, larger
available BS set and smaller occupied BS set are favourable
to minimize the EOD. For outer state s and the selected outer
action a, the corresponding available BS set B̆k∗

o and the
occupied BS set Bk∗

o can be determined as per Subsection
II-A. Then, the outer reward function is defined as

r =
card(B̆k∗

o )

card(B̆k∗
o ) + card(Bk∗

o )
. (15)

The designed outer reward function (15) infers that the se-
lected RB k∗ resulting in larger available BS set and smaller
occupied BS set is more favourable. Given the formulation
of outer MDP, the duelling DQN is invoked to approximate
QD3(s,a|θD3) where θD3 represents the parameter vector of
D3QN network. The D3QN network is trained to minimize its
loss function via the gradient descent updating rule, shown as

θD3(t+ 1) = θD3(t)− αD3∇θD3
loss(θD3), (16)

where αD3 denotes the learning rate and ∇θD3
loss(θD3)

represents the gradient of the D3QN network’s loss function
w.r.t. θD3. For a mini-batch of ND3 transitions randomly
sampled from the outer replay buffer, the mean-square loss

15The transition of RBP map is stochastic and can be observed from the
outer environment, indicating that the D3QN learning process is model-free.

function in (16) is defined as

loss(θD3) =
1

ND3

ND3∑
t=1

[yt −QD3(st,at|θD3)]
2
, (17)

where yt = rt + γQD3(st+1,a
∗
t+1|θ

−
D3) and θ−D3 indicates

the parameter vector of target D3QN network. Note that the
optimal outer action for the next outer state st+1 is selected
by the D3QN network instead of the target D3QN network,
given by

a∗t+1 = argmax
at+1

QD3(st+1,at+1|θD3). (18)

In this manner, the bootstrapping outer action is evaluated by
the target D3QN network while the selection of outer action
is achieved by the D3QN network, completing the double Q
learning procedure. Applying double Q learning method to
separate action selection and bootstrapping evaluation into two
networks can help address the overestimation bias issue intro-
duced by the max operator in calculating the loss function.
After several steps of updating the D3QN network, the target
D3QN network will be synchronized to the D3QN network
via letting θ−D3 = θD3.

Given outer state s, the outer action selection strategy
applied by the D3QN agent follows the popular ϵ-greedy
policy, shown as

a =

randi(K), with probability ϵ

argmax
k=1,...,K

QD3(s, k|θD3), otherwise , (19)

where randi(K) outputs a random integer from the range
[1,K] and the exploration factor ϵ ∈ [0, 1] is used to bal-
ance exploration and exploitation during training. Specifically,
greater ϵ encourages D3QN agent to explore the outer action
space, while smaller ϵ results in more frequent exploitation of
learned knowledge. Commonly, ϵ keeps annealing alongside
the learning process, steering D3QN agent from more frequent
exploration to a higher probability of exploitation.

2) TD3: For each time slot n, the D3QN agent observes the
outer environment, from which it obtains the DUE’s location
q⃗u(n) and the RBP map C(n). Then, the D3QN agent selects
the outer action, i.e., the RB k∗. With the selected RB and
the current RBP map, the corresponding set of available BSs
B̆k∗

o can be determined. To reduce the overheads of CSI
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estimation and inner reward feedback, a random BS out of the
current available BSs will be selected by the C2 to perform
beamforming optimization. Thereafter, the type of large-scale
fading between the DUE and the chosen available BS can
be obtained. Then, the inner MDP for the TD3 network can
be formulated as follows. Each inner state ŝ consists of a
list of estimated CSI ⃗̈hbu(n, i) and its corresponding type of
LoS or NLoS. It is well known that artificial neural networks
(ANNs) only accept real numbers as their inputs, rather than
complex values. To circumvent this problem, the complex-
value estimated CSI ⃗̈hbu(n, i) will be transferred into a flatten
layer which decouples the complex value and reshapes its
real and imagery parts into a real-value vector. However, the
inner state ŝ is dominated by the flattened CSI, while only
one dimension is left for the indicator of pathloss type, which
raises the issue of dimension imbalance. To solve this, the
dimension for pathloss type indicator will be expanded from
1 to M via duplicating the pathloss type indicator into M
copies, making it comparable to the dimension of flattened
CSI. Each possible inner action â generated from the actor
network is a vector of real-value numbers, which will be re-
shaped into a normalized complex-value vector to construct the
corresponding beamforming vector w⃗bu(n, i). The transitions
of inner states are determined by the experienced small-scale
fading model. The inner reward function evaluates how good
the selected inner action is for each time of state transition.
To reflect the quality of selected inner action, the inner reward
function is defined as

r̂ =
|⃗hbu(n, i)w⃗bu(n, i)|2

∥⃗̈hbu(n, i)∥2
. (20)

TD3 method belongs to actor-critic algorithms [30], in
which the critic network learns Q function approximation
QP (ŝ, â|θP ) and the actor network is the policy generator
approximating the action µ(ŝ|θµ). Herein, θP and θµ denote
the parameter vectors of critic and actor networks, respectively.
As illustrated in Fig. 4, both actor and critic networks are
constructed in line with popular actor-critic implementation
in current literature [38]–[40]. In specific, the actor network
takes the inner state as its input and generates deterministic
continuous action as its output, unlike DQN-related methods
that output a probability distribution over discrete action space.
Furthermore, the inner action generated by the actor network
will be leveraged to the input layer of the critic network
together with the current inner state. Then, the corresponding
state-action value will be generated at the output layer of the
critic network. Please note that the actor network is invoked to
approximate the inner action, which helps avoid an exhaustive
search of the optimal inner action maximizing the Q function
given the next inner state.

The gradient descent updating on the twin critic networks
can be given by

θPĵ
(t+ 1) = θPĵ

(t)− αPc∇θP
ĵ
loss(θPĵ

), (21)

where αPc indicates the learning rate, ∇θP
ĵ
loss(θPĵ

) denotes
the gradient of critic network’s loss function w.r.t. θPĵ

and
ĵ ∈ {1, 2} is defined to distinguish the twin critics. Besides,
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â = µ(ŝ|θµ)

�ωbu(n, i)
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Figure 4: Architecture of TD3 network

the corresponding mean-square loss function is defined as

loss(θPĵ
) =

1

NP

NP∑
t=1

[
ŷt −QP (ŝt, ât|θPĵ

)
]2

, (22)

where

ŷt = r̂t + γmin
ĵ=1,2

QP [ŝt+1, µ(ŝt+1|θ−µ ) +N−|θ
−
Pĵ
] (23)

represents the target Q value, NP is from a mini-batch of NP

transitions extracted from the inner replay buffer, and θ−Pĵ
,

θ−µ and N− denote the parameters of target critic network,
those of target actor network and additive noise for target actor
network, respectively. Note that the operator min in (23) and
N− are posed for accomplishing clipped double Q learning
and target policy smoothing, respectively.

Moreover, the actor network aims to maximize its expected
return, defined as

J(θ) = Eŝt{Q[ŝt, µ(ŝt|θµ)|θP ]}, (24)

of which the derivative w.r.t. θµ can be calculated with help
of the chain rule, shown as

∇θµ
J(θ) ≈ Eŝt{∇θµ

Q[ŝt, µ(ŝt|θµ)|θP ]}

=
1

NP

NP∑
t=1

∇aQP (ŝt, a|θP1
)∇θµ

µ(ŝt|θµ), (25)

where the critic 1 is anchored by the chain rule for simplicity.
Then, the gradient ascent updating of the actor network can

be expressed as

θµ(t+ 1) = θµ(t) + αPa∇θµJ(θ), (26)

where αPa is the learning rate of the actor network. More-
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ŝj → ŝj+1
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ŝj → ŝj+1
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(b) Offline exploitation

Figure 5: Workflow and an example illustrating offline exploitation of hybrid D3QN-TD3 solution

over, to complete the delayed policy update procedure, the
actor, target actor and the twin target critics will be updated
less frequently than the twin critics, via updating the target
networks every Npud times the twin critics are trained.

Furthermore, the Polyak averaging updates for the target
critic and actor networks are applied to enhance the stability
of learning, given by

θ−Pĵ
← τθPĵ

+ (1− τ)θ−Pĵ
, (27)

θ−µ ← τθµ + (1− τ)θ−µ , (28)

respectively, where τ is the interpolation factor in Polyak
averaging method for updating target networks and it is usually
set to be close to zero, i.e., τ ≪ 1.

Different from probabilistic action selection policy on dis-
crete actions for D3QN agent, exploration on continuous
actions for TD3 agent can be realized via adding noise sampled
from a noise process N to the actor network, i.e., â← â+N ,
where N can be chosen to adapt to the inner environment
[38]. For simplicity, zero-mean Normal noise with variance
σ2
P is applied to generate artificial noise for the output of actor

network, where σ2
P is annealing alongside the learning process

to guide the TD3 agent from exploration to exploitation.
Without loss of generality, the additive noise posed on the
target actor network N− is generated from zero-mean Normal
distribution with annealing variance σ2

P as well.

The overall pseudo-code and interacting diagram of the
proposed hybrid D3QN-TD3 solution are given by Algorithm
1 and Fig. 5(a), respectively.

3) Complexity Analysis and Justification of the Pro-
posed D3QN-TD3 Algorithm: The proposed D3QN-TD3
method is genuinely an online-centralized-learning-and-
offline-decentralized-execution algorithm, for realizing its ef-
ficient implementation without introducing heavy burden of
computations or unbearable delays and overheads of infor-
mation transferring, e.g., imperfect CSIs and designed beam-
forming vectors between the C2 and available BSs, during

Algorithm 1: The hybrid D3QN-TD3 solution
1 Initialization: Initialize D3QN QD3(s, a|θD3) and its target network

QD3(s, a|θ−
D3), with θ−

D3 ← θD3. Initialize TD3, including actor network
µ(s|θµ), twin critics QP (s, a|θP

ĵ
), target actor µ(s|θ−

µ ) and twin target

critics QP (s, a|θ−
P
ĵ
), with θ−

µ ← θµ and θ−
P
ĵ
← θP

ĵ
. Initialize D3QN

and TD3 replay buffers R and R̂ with capacity D̀ and D́, respectively;
2 for episode = [1, epi] do
3 Initialize the outer environment and reset the UAV’s location to q⃗u(0);
4 for i = [1, epoouter] do
5 Observe the outer state si;
6 Select the outer action ai, observe the available set B̆ai

o and the
occupied set Bai

o ;
7 Randomly select a BS b̆ ∈ B̆ai

o and check its B2D pathloss type,
i.e., LoS or NLoS, then initialize the inner environment;

8 for j = [1, epoinner] do
9 Observe the inner state ŝj ;

10 Select and execute the inner action âj , observe the next inner
state ŝj+1 and calculate the inner reward r̂j ;

11 Store transition (ŝj , âj , ŝj+1, r̂j) into R̂;
12 if card

(
R̂
)
≥ NP then

13 Sample a mini-batch of NP transitions from R̂, then
update the twin critic networks QP (s, a|θP

ĵ
) via

gradient descent method in (21);
14 Every Npud times twin critics are trained, update actor

network µ(s|θµ) via gradient ascent in (26), and update
target networks QP (s, a|θ−

P
ĵ
) and µ(s|θ−

µ ), follow-

ing Polyak averaging rule in (27) and (28), respectively;

15 Execute the outer action ai, observe the next outer state si+1 and
calculate the outer reward ri;

16 Store transition (si, ai, si+1, ri) into R;
17 if card (R) ≥ ND3 then
18 Sample a mini-batch of ND3 transitions from R, update D3QN

network QD3(s, a|θD3) via gradient descent in (16);
19 Update the D3QN target network QD3(s, a|θ−

D3) every ΥD3

steps, i.e., θ−
D3 ← θD3;

20 Update ϵ← ϵ× decϵ and σ2
P ← σ2

P × decσ ;

its exploitation for RRM.16 Specifically, the proposed DRL-
enabled algorithm is trained in a manner of online and central-
ized learning, aided by stochastic gradient descent/ascent with
back-propagation, while interacting with outer and inner en-
vironments. Then, within the phase of offline exploitation, the
trained D3QN agent would remain centralized at the C2, while

16Despite the proposed D3QN-TD3 algorithm could be efficiently imple-
mented in an online-centralized-learning-and-offline-decentralized-execution
fashion, it may still suffer from scalability issue, i.e., the computational com-
plexity is worth being highlighted as a potential hazard once the considered
system model scales up.
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the trained TD3 agent would be copied and distributed to be
implanted to all the involved BSs, inspired by distributed ML
frameworks, e.g., federated learning (FL) [41]–[43]. The C2
would select the optimal RB index for DUE after observing the
current RBP map, with the help of trained D3QN agent. Fur-
thermore, according to Subsection II-A, available BSs would
be appointed by the C2, after which these available BSs would
activate their TD3 agents to perform transmit beamforming.
Therefore, D3QN and TD3 components carry out a two-step
optimization process of RB coordination and beamforming
design, via forward-propagations of the observed RBP map
and local imperfect CSI, respectively. It is well known that,
for feedforward neural networks, forward-propagation is much
less computation-hungry than parameter update with back-
propagation. For ease of interpreting, Fig. 5(b) shows an exam-
ple of appointed available BSs, potential BSs, current occupied
BSs and the corresponding B2D downlink transmissions, for
C2’s selected RB index.

During the online training phase, overheads rooted in in-
teractions between the proposed D3QN-TD3 method and the
environments as well as errors introduced by information
observing and sharing would be another main source of
concern. The outer reward function (15) and inner reward
function (20) are designed to have nothing to do with extra en-
vironment information, e.g., CSIs and beamforming vectors of
occupied BSs and AWGN variance, but focus on introducing
more available BSs and optimizing beamforming performance
of the selected available BS, respectively. These setups of
reward functions significantly reduce overheads of information
acquisitions during online training, while the aforementioned
extra environment information is only used for calculating
EOD for numerical results during offline execution. As the
RBP map is genuinely a 2D binary matrix, it is assumed
that the D3QN agent can observe it without errors or delays.
Regarding the accuracy of available BS’s CSI, estimation error
has been modelled in (5), for enhancing modelling practicality
and highlighting the motivation of applying DRL-aided beam-
forming design. Thanks to the presence of experience replay
buffer, both D3QN and TD3 are trained as per sampled mini-
batch data out of their respective experience replay buffer,
which means that their online trainings are off-policy and they
could learn patterns of outer and inner environments from past
experiences. Therefore, the TD3 agent is steered to select one
single BS from current set of available BSs, for relieving issues
of overheads and delays of CSI estimation and transfer during
online learning stage. Though each time TD3 agent interacts
with only one available BS, with the help of experience replay
buffer, TD3 agent can still be trained to learn patterns of the
inner environment with sufficient amount of stored transitions.

IV. SIMULATION RESULTS

An urban subregion specified by [0, 3]× [0, 3]× [0, 0.1] (in
km) is concentrated for conducting numerical results, in which
local building distribution is generated via one realization
of ITU statistical model as shown in Fig. 2. The parameter
setting of this statistical model is in line with those in
Subsection II-B2. Note that the generated building distribution

remains unchanged amid the entire simulation process, which
corresponds to real-life scenario. In our considered model, the
DUE’s location at each time slot, i.e., q⃗u(n), is observed to de-
termine the LoS/NLoS links via checking potential blockages
between the DUE and the BSs.

For ease of implementation and due to the trajectory-
independent nature of formulated RRM problem (14), the
DUE’s initial location and destination are fixed at q⃗u(I) =
(1, 1, 0.1) km and q⃗u(D) = (2, 2, 0.1) km, respectively. The
given trajectory is defined as the line between q⃗u(I) and
q⃗u(D), of which the length is

√
∥q⃗u(D)− q⃗u(I)∥2≈1.4 km.

Besides, the velocity of DUE is set as Vu=35 m/s and hence
the DUE will spend Tu = 40 s to travel between q⃗u(I) and
q⃗u(D). Nakagami-m fading17 is taken as an example to model
the small-scale fading for B2D channels. Besides, we apply the
popularly-used Rayleigh fading [44] to model the terrestrial
small-scale fading component and the beamforming strategy
for terrestrial transmission is in line to w⃗bg = h⃗†bg/||⃗hbg||
for simplicity.18 Unless otherwise mentioned, the simulation
parameter settings are in accordance with Table II.

A. Construction of DNNs

The proposed hybrid D3QN-TD3 solution is implemented
on MacBook Pro with 2.3GHz quad-core Intel Core i5 and
8GB of 2133MHz LPDDR3 onboard memory, while the cor-
responding online training phase is performed on Python 3.8
with TensorFlow 2.3.1 and Keras. The optimizer minimizing
the mean-square error (MSE) for all the applied deep neural
networks (DNNs) is Adam with fixed learning rate. The
activation function at each hidden layer (including each convo-
lutional layer of CNN) is ReLU function, for its simplicity and
generality. Besides, the activation function utilized for both
output layers in D3QN and critic network of TD3 is Linear,
while that for actor network of TD3 is Tanh.19

The DNN of D3QN agent is constructed with fully con-
nected feedforward ANN, in which 3 hidden layers contain
512, 256 and 128 neurons, respectively. The shapes of CNN’s
input and output layer of D3QN are determined by the
dimension of RBP map and the number of possible RBs,
i.e., card(B)×card(K) and card(K), respectively. Before the
output layer and after the last hidden layer, there is a duelling
layer with card(K)+1 neurons, where one neuron reflects the
estimation of state-value and the remaining card(K) neurons
track the action advantages for the card(K) possible actions.

17In contrast to terrestrial communications where Rayleigh fading is widely
applied to model small-scale fading, Rician or Nakagami-m fading is more
suitable to track the characteristics of B2D small-scale fading when LoS
pathloss is experienced. For Nakagami-m fading model, special case m = 1 is
equivalent to Rayleigh fading while the case with m > 1 can be utilized as an
alternative of Rician fading where m reflects the strength of LoS component.

18This paper focuses on the interference management for cellular-connected
UAV networks and the precoding configuration regarding terrestrial trans-
missions is not our interest. Here, we assume that the occupied BSs simply
perform MRT technique for their serving GUEs.

19On the contrary to other popular activation functions, inter alia, ReLU,
Softmax or Sigmoid, Tanh does not lose the degree of freedom to output
both positive and negative values, which is of essence for the design of
beamforming vector. Besides, the output of Tanh is bounded within the range
of (-1,1), which may enhance stability and robustness of training process.
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loss(θµ)=
1

NP

NP∑
t=1

−QP [ŝt, µ(ŝt|θµ)|θP1 ]+κ

[
max

(
1

2M

2M∑
m=1

ϱt,m − ξ, 0

)
+max

(
− 1

2M

2M∑
m=1

ϱt,m − ξ, 0

)]2 (29)

Table II: Simulation parameter settings

Parameters Values Parameters Values Parameters Values

Capacities of replay buffers D̀/D́ 100,000/100,000 Given TOP threshold Γth 0 dB Number of episodes epi 100
Capacity of B 37 Number of outer epochs epoouter 22 Capacity of K 100
Number of inner epochs epoinner 200 Transmit power of each BS P 15 dBm Target network update frequency ΥD3 500
Number of antennas at each BS M 8 Initial exploration parameter ϵ/σ2

P 0.9/1 Tier of ICI p 1

Exploration annealing rate decϵ /decσ 0.93/0.91 Power of AWGN σ2 -90 dBm Size of mini-batch ND3 /NP 128/128
Carrier frequency fc 2 GHz Polyak interpolation factor τ 0.00005 DUE’s altitude h/BS’s antenna height z 100 m/25 m
Learning rates αD3 /αPc /αPa 0.001/0.002/0.001 SINR measurements ς 1000 Discount factor γ 0.99
Duration of time slot δu 1.82 s Nakagami factor m for LoS/NLoS 3/1 Imperfect B2D CSI correlation factor ρ 0.75
Policy update delay factor Npud 2 Prior-activation penalty coefficient κ 1 Absolute saturation value of Tanh ξ 2.5
Size of CNN’s kernel kc

1 /kc
2 /kc

3 5/4/3 Number of CNN’s filter fc
1 /fc

2 /fc
3 32/32/32 Size of CNN’s stride sc1 /sc2 /sc3 1/1/1

ITU building distribution variable β̂ 103 buildings/km Building distribution variables α̂/γ̂ 0.3/20 m Road width in building distribution D̂ 0.02 km

After aggregation, the output layer generates the estimation of
the card(K) state-action values, as depicted in Fig. 3.

Both the twin critic and actor networks’ DNNs in TD3
agent are fully connected feedforward ANNs with 3 hidden
layers consisting of 512, 256 and 128 neurons. The dimensions
of input layer and output layer of the twin critic networks
correspond to 2M +M +2M and 1, while those of the actor
network are 2M+M and 2M , respectively. This is because the
Nakagami-m fading component is in form of complex value,
which should be decoupled at the input layers of the critic
and actor networks. Besides, M additional neurons should be
added into the input layers of the critic and actor networks to
help them identify LoS/NLoS inner environment. To calculate
the inner reward function (20), the actor network’s outputs
will be reconstructed into complex-value vector with M × 1
dimension, after which the vector will be normalized to satisfy
constraint (14c).

Although activation function Tanh is popular and effective,
it may suffer from saturation. When the input of Tanh locates
in the left (right) saturation region, the corresponding output
will unreasonably approach -1 (1), raising gradient vanishing
issue amid back-propagation of the training process [28]. To
tackle this problem, prior-activation penalty will be posed
onto the actor network’s loss function, which can direct the
input of Tanh to remain in the range of unsaturation area.
In implementation, gradient ascent on actor’s expected return
(26) is accomplished via inverse batch gradient descent on the
estimated Q function of critic 1 network, given by

θµ(t+ 1) = θµ(t)− αPa∇θµ
loss(θµ), (30)

where the mean loss function of actor network is denoted as

loss(θµ) = −
1

NP

NP∑
t=1

QP [ŝt, µ(ŝt|θµ)|θP1
] . (31)

Then, to perform prior-activation penalty trick, the mean loss
function of actor network (31) is rewritten as (29) shown at
the top of this page, where κ indicates the coefficient of prior-
activation penalty, ξ represents the absolute saturation value of
Tanh activation function, and ϱt,m denotes the prior-activation
value of the corresponding neuron m = {1, 2, · · · , 2M} over
one time of sampling t from mini-batch transitions. The actor
is trained to minimize (29), which can directly navigate the
prior-activation values of actor’s output neurons to remain in
the unsaturation region and thus helping circumvent the issue

of gradient vanishing caused by saturation.
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Figure 6: Reward history

B. Training of Hybrid D3QN-TD3 Algorithm

Fig. 6 shows reward history curves versus training episodes
for the proposed hybrid D3QN-TD3 solution. The average
reward reflects the expected value of epoch rewards for each
episode, which is calculated via averaging accumulated re-
wards over training epochs. It can be observed from Fig. 6 that
both D3QN and TD3 networks illustrate increasing trending
of average reward alongside the training process, though ex-
periencing some fluctuations that are usual phenomena in the
regime of DRL-related algorithms. Specifically, the D3QN’s
average reward converges to the optimum (around 0.57) after
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70 training episodes, while the TD3 converges to its highest
average reward (about 0.51) after 40 training episodes. Fig.
6(a) validates that the D3QN agent can adapt to the dynamic
RBP environment via allocating proper RB index to the DUE
for each time slot, while Fig. 6(b) verifies that the TD3 agent
is able to adjust transmit beamforming vectors to fit the small-
scale fading environment. After saving the hybrid D3QN-TD3
model with the highest average rewards, it can be re-loaded to
realize EOD performance comparison which will be illustrated
in Subsection IV-D.
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Figure 7: Impact of learning rates and target network update
frequency

C. Impacts of Hyper-parameters

It is well known that the overall performance of DRL-
related algorithms is sensitive to hyper-parameters, e.g., tar-
get network update and learning rate. The hyper-parameters
should be picked carefully for given system settings, to realize
satisfactory learning quality and convergence speed.

Fig. 7(a) delivers average D3QN reward curves versus train-
ing episodes with various αD3, while Fig. 8(a) demonstrates
average TD3 reward curves versus training episodes with
different combinations of αPa and αPc. From these figures, it
can be observed that learning rates pose significant impacts on
learning performance and convergence speed. With relatively
high αD3, i.e., αD3 = {0.1, 0.01}, although the D3QN’s con-
vergences are quite rapid, it reaches extremely unsatisfactory
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Figure 8: Impact of learning rates and Polyak interpolation
factor

learning scores (both around 0.3). With relatively small αD3,
i.e., αD3 = {0.001, 0.0001}, the D3QN agent can achieve
higher scores (about 0.57 and 0.54, respectively). Surprisingly,
when αD3 is extremely small, i.e., αD3 = 0.000001, it leads
to unsatisfactory learning performance in the range of 100
training episodes. However, αD3 = 0.000001 may have the
potential to help the D3QN agent reach a new highest score,
for which the price is that much more training episodes are
needed (i.e., less favourable convergence rate). For Fig. 8(a),
learning rate combination [αPa = 0.001, αPc = 0.002] is se-
lected as the anchor for comparison, which can converge to its
optimal score (around 0.51) after about 40 training episodes.
With higher αPa, i.e., [αPa = 0.01, αPc = 0.002], the
TD3 agent barely learns anything and achieves significantly
worse score (around 0.06). With smaller αPa, i.e., [αPa =
0.0001, αPc = 0.002], the TD3 agent converges to a worse
score (about 0.38) than the anchor, after around 60 training
episodes, which means that it experiences slower convergence
rate. With higher αPc, i.e., [αPa = 0.001, αPc = 0.02], the
TD3 agent converges to worse learning quality (around 0.18),
although the corresponding convergence speed is relatively
rapid. With smaller αPc, i.e., [αPa = 0.001, αPc = 0.0002],
the TD3 agent can only reach much lower learning score
(around 0.37), while experiencing a comparable convergence
speed (converging after around 40 training episodes). From
the above observations, it is straightforward to conclude that
the proposed hybrid D3QN-TD3 solution is unsurprisingly
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sensitive to learning rate which should be selected delicately
for accomplishing a good trade-off between learning quality
and convergence speed.

Fig. 7(b) depicts average D3QN reward curves versus train-
ing episodes with different ΥD3, while Fig. 8(b) illustrates
average TD3 reward curves versus training episodes with
various τ . From these figures, it can be easily concluded
that target network technique adopted in the proposed hybrid
D3QN-TD3 algorithm is undoubtedly of essence. Specifically,
less frequent updating (i.e., larger ΥD3) on D3QN’s target
network can help the D3QN agent achieve better learning
scores, while less amount of updating (i.e., smaller τ ) on
TD3’s target networks is more favourable. However, larger
ΥD3 and smaller τ may result in slower convergence speed.
Hence, the picking of ΥD3 and τ is important for the proposed
hybrid D3QN-TD3 solution to deal with the dilemma between
learning performance and convergence speed.
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Figure 9: Performance comparison

D. Performance Comparison

After online centralized training, performance comparison
between representative baselines and the trained D3QN-TD3
solution can be conducted within the offline decentralized
exploitation phase, where the following benchmarks are pro-
vided. 1) RR w/o BD: the RB index selected for each time
slot and the beamforming vector at each available BS are
both randomly generated. Note that this approach is supposed

to be the worst, which may lead the DUE to suffer from
the maximal transmission outage duration. 2) RR w/ BD: the
RB index scheduled for each time slot is randomly selected,
but the beamforming vectors at available BSs are generated
with the help of trained TD3 agent. 3) RR w/ MRT: different
from RR w/ BD, MRT technique is invoked to generate the
beamforming vectors, based on the corresponding estimated
CSIs. 4) ER w/ BD: the RB index assigned for each time
slot is the optimal via exhaustive search method, which can
maximize (15) for every observed RBP map. Besides, the
beamforming vector at each available BS is obtained from
the trained TD3 agent. Note that this benchmark serves as
the lower bound of EOD performance, which is supposed to
help the DUE suffer the minimal transmission outage duration.
5) ER w/ MRT: different from ER w/ BD, the beamforming
vectors are designed with the help of MRT technique, based
on the corresponding estimated CSIs. 6) Buffer-less DRL: this
DRL-aided baseline is invoked to highlight the importance of
experience replay buffer, to construct which state-of-the-art
synchronous advantage actor-critic (A2C) [39] and proximal
policy gradient (PPO) [40] frameworks are invoked. During
offline exploitation for RRM, RB index selection and beam-
forming design are alternatively accomplished via the trained
A2C and PPO agents, respectively. Please note that extra
hyper-parameters introduced by A2C and PPO, e.g., value
function coefficient, entropy parameter, the maximum value
for gradient clipping and policy-clipping ratio controlling the
distance between new policy and its old counterpart, are set
in line with those default values as suggested by [45].

The proposed hybrid D3QN-TD3 solution provides the
proper RB index for each time slot and designed beamforming
vector for each available BS, with the aid of trained D3QN
agent and TD3 agent, respectively. Fig. 9(a) and Fig. 9(b)
show EOD curves of the proposed D3QN-TD3 solution and
benchmarks versus P and M , respectively. It is clearly illus-
trated in Fig. 9(a) that the EOD curves decrease dramatically
with the increase of P , which means that higher P can help
the DUE achieve better transmission outage performance (i.e.,
lower EOD). Comparing the EOD curves of RR w/o BD and
RR w/ BD, EOD performance enhancement can be observed
(especially, for P ∈ [−10, 20] dBm), which validates the
effectiveness of TD3 component. Furthermore, via comparing
the curves of RR w/ BD and RR w/ MRT, one can observe
that the trained TD3 agent can help the UAV suffer from
less amount of EOD than MRT beamforming scheme (for
P ∈ [−10, 20] dBm), in case of imperfect CSI estimation.
Similar phenomenon can be observed via comparing ER w/
BD and ER w/ MRT. This is because the MRT beamforming
strategy can only adapt to the estimated CSI, while the TD3
agent is trained to adapt to the overall imperfect CSI. Besides,
greater EOD performance improvement can be achieved with
the help of D3QN component, via comparing the EOD curves
of RR w/ BD and the proposed hybrid D3QN-TD3 solution
(especially, for P ∈ [−20, 20] dBm). The aforementioned
observations validate that the trained D3QN and TD3 agents
are able to offer independent EOD performance gains, which
is a remarkable feature of the proposed hybrid D3QN-TD3
solution. Compared to the optimal method ER w/ BD, the
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proposed hybrid D3QN-TD3 solution can help the DUE
achieve suboptimal EOD performance which performs slightly
worse than the optimal approach but can provide significant
EOD reduction than benchmarks RR w/o BD, RR w/ BD
and RR w/ MRT. Most importantly, the proposed hybrid
D3QN-TD3 solution outperforms ER w/ MRT as well, which
means that the joint RB allocation and beamforming design
provided by the proposed hybrid D3QN-TD3 solution can
offer more significant EOD reduction than that offered by
MRT beamforming with optimal RB allocation. Comparing
curves of Buffer-less DRL and the proposed hybrid D3QN-
TD3 algorithm, it is straightforward to find that the latter
outperforms the former counterpart with significant perfor-
mance gap. This phenomenon reflects the importance of
experience replay buffer for DRL-aided solution solving the
concentrated EOD minimization problem, because the expe-
rience replay buffer makes it possible to break the temporal
correlations of experienced transitions via mixing recent and
former experiences into the replay buffer, guaranteeing that
rarely experienced transitions get fairer chances to be utilized.
Through scarifying computation and memory for recording
and sampling, experience replay technique lightens burden of
requiring numerous experiences for training. However, this
compromise is worthwhile because the interactions between
RL agent and environment are more resource-expensive in
general [46]. Similar conclusions can be drawn from Fig.
9(b) which demonstrates EOD curves versus various M . Note
that for specific antenna number configuration, the proposed
hybrid D3QN-TD3 algorithm needs to be retrained with the
corresponding antenna number.20 From this figure, one can
find the other fact that increasing M can help enhance EOD
performance for solutions with beamforming design (RR w/
BD, RR w/ MRT, Buffer-less DRL, Hybrid D3QN-TD3, ER w/
BD and ER w/ MRT), but cannot achieve any EOD reduction
for solution without beamforming design (RR w/o BD).

V. CONCLUSION

This paper studied an RRM problem of joint RB allocation
and beamforming design for cellular-connected UAVs while
protecting B2G transmissions from being interfered by co-
channel ICIs generated from B2D communications, in which
DUE’s EOD was minimized via the proposed DRL-aided
hybrid D3QN-TD3 algorithm. Specifically, the D3QN and
TD3 agents were trained to accomplish RB coordination in
discrete action domain and beamforming design in continuous
action regime, respectively. To realize this, an outer MDP
was defined to characterize the dynamic RBP environment at
the terrestrial BSs, while the inner MDP was formulated to
trace the time-varying feature of B2D small-scale fading. The
hybrid D3QN-TD3 solution was proposed to solve the outer
MDP and the inner MDP interactively so that suboptimal EOD
performance for the considered optimization problem can be
achieved. Numerical results illustrated that the proposed hybrid
D3QN-TD3 algorithm can significantly reduce EOD suffered

20The robustness of TD3 agent to various antenna number configurations
can be enhanced via adopting hypernetwork [47], which is envisioned to
relieve the retraining burden or even liberate the agent from being retained.

by the DUE compared to the provided benchmarks, where the
trained D3QN and TD3 agents were also validated to offer
independent improvements on EOD minimization.
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